
www.manaraa.com

The Texas Medical Center Library The Texas Medical Center Library 

DigitalCommons@TMC DigitalCommons@TMC 

The University of Texas MD Anderson Cancer 
Center UTHealth Graduate School of 
Biomedical Sciences Dissertations and Theses 
(Open Access) 

The University of Texas MD Anderson Cancer 
Center UTHealth Graduate School of 

Biomedical Sciences 

5-2018 

The Regulation of DNA Methylation in Mammalian Development The Regulation of DNA Methylation in Mammalian Development 

and Cancer and Cancer 

Nicolas Veland 

Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations 

 Part of the Amino Acids, Peptides, and Proteins Commons, Biological Factors Commons, Cancer 

Biology Commons, Cells Commons, Molecular Biology Commons, Molecular Genetics Commons, and the 

Nucleic Acids, Nucleotides, and Nucleosides Commons 

Recommended Citation Recommended Citation 
Veland, Nicolas, "The Regulation of DNA Methylation in Mammalian Development and Cancer" (2018). 
The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences 
Dissertations and Theses (Open Access). 848. 
https://digitalcommons.library.tmc.edu/utgsbs_dissertations/848 

This Dissertation (PhD) is brought to you for free and 
open access by the The University of Texas MD Anderson 
Cancer Center UTHealth Graduate School of Biomedical 
Sciences at DigitalCommons@TMC. It has been 
accepted for inclusion in The University of Texas MD 
Anderson Cancer Center UTHealth Graduate School of 
Biomedical Sciences Dissertations and Theses (Open 
Access) by an authorized administrator of 
DigitalCommons@TMC. For more information, please 
contact digitalcommons@library.tmc.edu. 

https://digitalcommons.library.tmc.edu/
https://digitalcommons.library.tmc.edu/utgsbs_dissertations
https://digitalcommons.library.tmc.edu/utgsbs_dissertations
https://digitalcommons.library.tmc.edu/utgsbs_dissertations
https://digitalcommons.library.tmc.edu/utgsbs_dissertations
https://digitalcommons.library.tmc.edu/uthgsbs
https://digitalcommons.library.tmc.edu/uthgsbs
https://digitalcommons.library.tmc.edu/uthgsbs
https://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/954?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/930?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/12?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/12?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/940?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/31?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/935?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.tmc.edu/utgsbs_dissertations/848?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@library.tmc.edu


www.manaraa.com

 THE REGULATION OF DNA METHYLATION IN MAMMALIAN  

DEVELOPMENT AND CANCER 

 

by 

Jaime Nicolas Veland, B.S.  

 

 

APPROVED: 

 

______________________________ 

Taiping Chen, Ph.D.  

Advisory Professor 

 

______________________________ 

Mark T. Bedford, Ph.D. 

 

______________________________ 

Sharon Y. R. Dent, Ph.D. 

 

______________________________ 

Kevin M. McBride, Ph.D. 

 

______________________________ 

Gregory K. Wilkerson, D.V.M., Ph.D., D.A.C.V.P. 

 

APPROVED: 

 

____________________________ 

Dean, The University of Texas 

MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences 



www.manaraa.com

THE REGULATION OF DNA METHYLATION IN MAMMALIAN  

DEVELOPMENT AND CANCER 

 

A 

DISSERTATION 

 

Presented to the Faculty of  

The University of Texas 

MD Anderson Cancer Center UTHealth  

Graduate School of Biomedical Sciences 

 

in Partial Fulfillment 

of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHY 

 

 

by 

Jaime Nicolas Veland, B.S. 

Houston, Texas 

May, 2018 



www.manaraa.com

 iii 

EPIGRAPH 

 

 

“Go confidently in the direction of your dreams! Live the life you have imagined.” 

 

-- Henry David Thoreau (1817 – 1862) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 iv 

DEDICATION 

 

This dissertation is dedicated to my mother, who deeply inspired me to become a 

scientist at a very early age, and whose hard work and sacrifice has allowed me to pursue 

my dream and taught me to always give the best of myself in everything I do. 

This research work is also greatly dedicated to my wife Marta, who has tremendously 

supported me since the first step of this long journey, and who truly encouraged me to 

follow my dream to become a scientist, despite the difficulties that arise in the way. Her 

care and affection were essential for me in order to reach the finish line.  

Finally, this research work is also dedicated to my daughter Gabriela, whose laughs 

and joys fueled me up in the last hard stretch of this journey, and motivated me not only to 

be a good scientist, but also to be a great person. 

 

 

 

 

 

 

 

 



www.manaraa.com

 v 

ACKNOWLEDGMENTS 

 

 I would like to thank all the people that contribute to make this research work 

possible: 

 In the first place, to Dr. Taiping Chen, my mentor, for his extraordinary guidance, 

remarkable mentoring, unconditional support, significant motivation, outstanding scientific 

discussions, and fundamental advices in both scientific and personal matters. In particular, 

for all the time and efforts dedicated to all the different aspects of my scientific education, 

including, but not limited to, achieving good experimental and technical skills, maximizing 

my experimental productivity, developing critical and independent scientific thinking, 

acquiring good communication skills, both oral and written, and contributing to my 

development as a good laboratory member and scientist.  

To Dr. Mark T. Bedford, for all his amazing advices, essential support, scientific 

discussions and critical suggestions, which play key roles in my formation as a scientist and 

the development of this research work. 

To Dr. Sharon Y.R. Dent, for her important advices, outstanding support, critical 

suggestions and integral example of scientific leadership, which inspire me and are 

fundamental for my scientific training and education. 

To the rest of my advisory committee members, Dr. Kevin M. McBride and Dr. 

Gregory K. Wilkerson, for their incredible support, important suggestions, time and efforts 

for participating in all the committee meetings, which tremendously contribute to my 

scientific training. 



www.manaraa.com

 vi 

To Dr. David G. Johnson, for his incredible support, advices and guidance since my 

first visit to Science Park, which later continued during my rotation time in his lab, and for 

being an outstanding teacher and chair of my candidacy exam committee. 

To Dr. Shawn B. Bratton and Dr. Rick A. Finch, who in addition to Dr. Johnson, Dr. 

Bedford and Dr. McBride, were part of my candidacy exam committee, for their time and 

important support during the evaluation.   

To Renier Velez-Cruz, for all his amazing support, training and guidance since my 

first days in Science Park during the rotation in Johnson Lab, which over time turned into a 

very important friendship. To Tewfik Hamidi and Swanand Hardikar, who are my two pillars 

in the Chen Lab, as their help, technical support, advices, scientific discussions and 

friendship were essential for my scientific training. Multiple important parts of this research 

work would not have been possible without these two people, and because of that, and many 

other things outside the lab, I will always be indebt to them.  

To past and present members of the Chen lab, including Hongbo Zhao, Anup Kumar 

Singh, Jeesun Kim, Soojin Kim, Jiameng Dan, Bigang Liu, Zhengzhou Ying and Yang Zeng, 

for training me in experimental procedures, and for their advices, technical support and 

scientific discussions that significantly contribute to the development of this research work. 

To my collaborators inside MD Anderson Cancer Center, including Yue Lu, Sally 

Gaddis, Yoko Takata, Kevin Lin, Yi Zhong, Marcos Estecio and Jianjun Shen and the rest of 

the Molecular Biology Core at Science Park, for the essential roles that they play in this 

research work.  Also to the Histology and Pathology Core and to the Animal Research 

Facility at Science Park for their support. Also to my collaborators outside MD Anderson 

Cancer Center, including Scott B. Rothbart, Brian D. Strahl and Maria D. Person, for their 

important contributions to this research work. 



www.manaraa.com

 vii 

To my past and present scientific friends and colleagues in Science Park, including 

Donghang Cheng,  Yanzhong (Frankie) Yang, Cari Sagum, Alexandra Espejo, Alessandra Di 

Lorenzo, Maria G. Garcia, Solomon Hailu, Joanna Baird, Kylee Veazey, Daric Wible and 

Lia Koutelou, for all their technical help, advices and scientific discussions.  

To my past and present classmates in Science Park, including Aimee Farria, Sitaram 

Gayatri, Hsueh-Ping (Eva) Chao and Cyndi Joseph, for all the laughs and good memories, 

which made our long studying evenings and nights at the Lab 3 mezzanine significantly 

easier. 

To Becky Brooks and Laura Denton, for their incredible and extraordinary support in 

terms of academic and administrative processes, respectively, which without, my entire 

academic research work would not be possible. 

To all the people in Science Park, including Brian, Duke, Jennifer and Joi from 

technical services and research graphics, as well as Gloria and Connie from shipping, and 

Sandra from glassware, as well as to all the personnel from the physical plant, whose daily 

jobs are fundamental to sustain and keep our beautiful campus running every day. 

To the scholarships from the Center for Cancer Epigenetics and from the Cancer 

Prevention and Research Institute of Texas (CPRIT), and to the Andrew Sowell-Wade 

Huggins Scholarship Fund, which provided me fundamental funding for the development of 

this research work. 

To my family that have been next to me in Texas, my wife Marta and my daughter 

Gabriela, who extremely support me, in all the possible ways, every day during this long, 

hard, but wonderful journey of this PhD, as well as to my mother in Peru, whose hard work, 

sacrifice and example, set the basis to perform this research work. This cannot be done 

without the three of you, I hope you are proud of me. 



www.manaraa.com

 viii 

ABSTRACT 

 

THE REGULATION OF DNA METHYLATION IN MAMMALIAN  

DEVELOPMENT AND CANCER 

 

Jaime Nicolas Veland, B.S. 

Advisory Professor: Taiping Chen, Ph.D. 

 
 
 
DNA methylation is an essential epigenetic modification in mammals, as it plays important 

regulatory roles in multiple biological processes, such as gene transcription, maintenance of 

chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-

chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. 

For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which 

have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great 

progress has been made in elucidating the biological functions of DNA methylation over the last several 

decades, how DNA methylation patterns and levels are regulated and dysregulated is not well 

understood. This dissertation focuses on the molecular mechanisms involved in the regulation of DNA 

methylation during mammalian development and in cancer. Using mouse embryonic stem cells 

(mESCs), an ideal model system for studying DNA methylation, I have discovered novel regulatory 

mechanisms that play important roles in de novo and maintenance DNA methylation. In one project, I 

show that Dnmt3L, a key regulator of de novo methylation, facilitates Dnmt3a-mediated methylation by 

stabilizing Dnmt3a2, the major Dnmt3a isoform in mESCs, thus uncovering a new role for Dnmt3L and 

providing a plausible explanation for the functional specificity of Dnmt3L. In a separate project, I 
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demonstrate that PRMT6, an arginine methyltransferase responsible for asymmetric dimethylation of 

histone H3 arginine 2 (H3R2me2a), negatively regulates maintenance DNA methylation by impairing 

the recruitment of the Dnmt1-Uhrf1 complex to chromatin, thereby identifying a novel crosstalk between 

histone arginine methylation and DNA methylation. Moreover, I show that PRMT6 upregulation 

contributes to global DNA hypomethylation in cancer. Lastly, my work results in the identification of an 

intestine-specific Dnmt1 protein product that originates from a proteolytic cleavage event, which could 

shed light on the regulation of DNA methylation in intestinal stem cells (ISCs). In summary, the research 

work in this dissertation advances our understanding of the regulatory network that controls DNA 

methylation changes in normal developmental processes and pathological conditions. 
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CHAPTER 1 : INTRODUCTION 

 

Part of this chapter is based upon: Veland N & Chen T. (2017) Mechanisms of DNA Methylation and 

Demethylation during Mammalian Development. In Handbook of Epigenetics, 2nd Edition. (ed. 

Tollefsbol T.), Elsevier Inc. Academic Press, pp11-24.  

 

Table 1 was adapted from the original version used in: Nicholson TB, Veland N, Chen T. (2015) Writers, 

Readers, and Erasers of Epigenetic Marks. In Epigenetic Cancer Therapy. (ed. Gray S.G.), Elsevier Inc. 

Academic Press, pp. 31-66.  

 

Used with permission of Elsevier. 
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1.1 OVERVIEW OF DNA METHYLATION 

 

DNA methylation, the covalent addition of a methyl group to the fifth position of cytosine (i.e. 

5-methylcytosine, 5mC), was initially discovered as epi-cytosine by Rollin D. Hotchkiss more than 60 

years ago (1). Subsequent studies revealed that DNA methylation is the most common form of DNA 

modification, which plays important roles in the regulation of chromatin structure and gene expression. 

DNA methylation is present in various organisms including many animals, plants and fungi. In 

mammals, DNA methylation mostly occurs in the context of CpG dinucleotides, with 60-80% of all 

CpGs in the genome being methylated, although non-CpG (i.e. CpA, CpT or CpC) methylation is 

abundant in specific tissues and cell types, including embryonic stem cells (ESCs), oocytes, and brain 

tissue (2). DNA methylation is essential for mammalian development and plays key roles in multiple 

biological processes such as genomic imprinting, X-chromosome inactivation, and transposon silencing 

(3). Consistent with its pleiotropic roles, DNA methylation patterns are altered in pathological 

conditions. For example, cancer cells usually exhibit global hypomethylation and local 

hypermethylation, which contribute to genomic instability and tumor suppressor silencing, respectively 

(4). 

5mC is not randomly distributed in the genome. In general, repetitive DNA sequences, including 

transposable elements and centromeric and pericentric satellite DNA, are heavily methylated. In contrast, 

CpG islands (CGIs, 1-2 kilobases of GC-rich regions) present in gene promoters are usually depleted of 

DNA methylation, with some exceptions. For example, CpGs on the inactive X chromosome in female 

cells are hypermethylated, and CpGs in imprinting control regions (ICRs) exhibit allele-specific 

methylation. On the other hand, gene bodies, especially exons, are often highly methylated. Unlike 

promoter methylation, which correlates with gene silencing, gene body methylation is often associated 

with transcriptional activity (5). 

In 1975, Holliday and Pugh and Riggs proposed that DNA methylation could be important for 

cellular memory by serving as a heritable epigenetic mark through cell division. Based on the 

complementarity of CpG/CpG dyads, they reasoned that methylated CpG sites could be replicated semi-
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conservatively during DNA replication (6, 7). The theory would predict the existence of two DNA 

methyltransferase activities: de novo methyltransferase(s) methylate unmodified DNA to establish DNA 

methylation patterns, and maintenance methyltransferase(s) methylate newly formed hemi-methylated 

CpG sites during DNA replication to maintain the patterns (Figure 1). The hypothesis was subsequently 

validated, to a large extent, by the identification of DNA methyltransferases with distinct expression 

patterns, biochemical properties, and biological functions (8). 

DNA methylation patterns and levels are determined by the opposing actions of the methylation 

and demethylation machineries. The methylation machinery includes DNA methyltransferases 

(DNMTs), which catalyze the transfer of a methyl group from the methyl donor S-adenosyl-L-

methionine (AdoMet or SAM) to the C-5 position of cytosines. There are four active DNMTs in 

mammals: DNMT1 is mainly responsible for maintaining DNA methylation patterns during DNA 

replication, whereas DNMT3A and DNMT3B function primarily as de novo methyltransferases that 

establish DNA methylation patterns (8). Recently, a new family member named DNMT3C is been found 

exclusively in rodents, where it plays a specific role in de novo methylation at retrotransposons during 

spermatogenesis (9). DNMT2, a protein with conserved DNMT catalytic motifs, turned out to be an 

aspartic acid tRNA methyltransferase and has been renamed tRNA aspartic acid (D) methyltransferase 1 

(TRDM1) (10). From a chemical perspective, DNA methylation is considered a relatively stable 

modification. However, global demethylation occurs in pre-implantation embryos and primordial germ 

cells (PGCs), and locus-specific demethylation takes place during cellular differentiation. DNA 

demethylation can be achieved by replication-dependent “passive” dilution of 5mC and replication-

independent “active” processes (11, 12). Great progress has been made in understanding the mechanisms 

of demethylation over the last several years, thanks to the discovery that the ten-eleven translocation 

(TET) family of proteins - TET1, TET2, and TET3 - function as 5mC dioxygenases that convert 5mC to 

5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) (13-16). 

There is compelling evidence that 5hmC, 5fC, and 5caC serve as intermediates for DNA demethylation 

(11, 12). 
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Figure 1: Overview of mechanisms of DNA methylation. 

During early development, de novo methylation adds methyl groups to specific CpG sites on both DNA 

strands (resulting in symmetric CpG methylation) and establishes DNA methylation patterns. After each 

round of DNA replication, the methylated CpG sites become hemi-methylated, as the newly replicated 

daughter DNA strand is unmethylated. Maintenance methylation recognizes hemi-methylated CpG sites 

and “copies” the DNA methylation pattern of the parental strand onto the daughter strand. Open and 

black filled circles indicate unmethylated and methylated CpG dinucleotides, respectively. U, 

unmethylated DNA; M, methylated DNA; H, hemi-methyalted DNA. The enzymes and their major 

accessary factors involved at different steps of DNA methylation are indicated. 
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1.2 DE NOVO DNA METHYLATION DURING MAMMALIAN DEVELOPMENT 

 

After fertilization, both the maternal and paternal genomes undergo global DNA demethylation 

during preimplantation development. As a result, DNA methylation marks inherited from gametes are 

largely erased by the blastocyst stage, with the exception of those in ICRs and some retrotransposons. 

After implantation, a wave of de novo methylation occurs in the epiblast to establish the initial pattern of 

DNA methylation (Figure 1) (17). DNA methylation shows further changes during cellular 

differentiation, and the patterns are then stably maintained in a lineage-specific manner after successive 

cell divisions. Similar epigenetic reprogramming events also take place during gametogenesis, including 

global demethylation in PGCs. Subsequently, a new round of de novo DNA methylation takes place in 

germ cells, which have already passed sex-determination, resulting in different methylation patterns in 

male and female gametes (sperm and egg) (3, 17). De novo methylation is mediated by DNMT3A and 

DNMT3B. A third member of the DNMT3 family, DNMT3-like (DNMT3L), has no catalytic activity, 

but is an important regulator of de novo methylation (Figure 2) (8). 
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Figure 2: Schematic diagram of major proteins involved in DNA methylation.  

A. Protein domain architecture of mouse DNA methyltransferases (DNMTs). The DNMT1 and DNMT3 

families of proteins share conserved catalytic motifs (I-X) in their C-terminal catalytic domains. 

DNMT3L lacks catalytic activity because some essential motifs are missing or mutated. The N-terminal 

regions of DNMT1 and DNMT3 proteins have little sequence similarity, with distinct domains that 

contribute to their functional specificities. DMAP1: DNA methyltransferase associated protein 1; PBD: 

PCNA-binding domain; NLS: nuclear localization sequence; RFTS: replication foci targeting sequence; 

UIM: ubiquitin interacting motif; CXXC: cysteine-rich motif; BAH: bromo-adjacent homology; GK: 

glycine/lysine-rich linker; I-X: DNA methyltransferase conserved catalytic motifs; PWWP: proline-

tryptophan-tryptophan-proline; ADD: ATRX-DNMT3-DNMT3L. The start site of the DNMT1o isoform 

is indicated. Locations of the most common alternatively spliced exons (exons 10, 11, 20, 21, 22) in 

DNMT3B are also indicated. B. Protein domain architecture of mouse UHRF1. UBL: ubiquitin-like 

domain; TTD: tandem tudor domain; PHD: plant homeodomain; SRA: SET and RING associated; 

RING: Really Interesting New Gene. 
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DNMT3A and DNMT3B 

The DNMT3A and DNMT3B genes were initially identified by searching an expressed sequence 

tag (EST) database using bacterial type II cytosine-5 methyltransferase sequences as queries. Their 

protein products have a similar structural organization, including a C-terminal catalytic domain that 

contains sequence motifs characteristic of all DNA methyltransferases (prokaryotic and eukaryotic) and 

an N-terminal regulatory domain that is distinct from that of DNMT1 (Figure 2) (18). The N-terminal 

regions of DNMT3A/3B contain a variable region (not conserved between DNMT3A and DNMT3B), 

followed by two conserved domains implicated in chromatin binding. The PWWP domain, an ~150-

residue domain with a conserved proline-tryptophan-tryptophan-proline (PWWP) motif, is necessary for 

heterochromatin targeting and mediates binding to trimethylated lysine 36 of histone H3 (H3K36me3) 

marks (19-21). The ADD (ATRX-DNMT3-DNMT3L) domain, composed of two C4-type zinc fingers 

(GATA binding protein 1 (GATA1) and plant homeodomain (PHD)-type), interacts with the N-terminal 

tail of histone H3 with unmodified lysine 4 (H3K4) (22, 23). Recent structural studies revealed that the 

ADD domain of DNMT3A interacts with its catalytic domain and blocks its DNA-binding affinity, 

resulting in autoinhibition. Unmodified histone H3 tail (but not H3 tail with H3K4me3) can disrupt the 

interaction between the ADD and the catalytic domains, leading to DNMT3A activation (24). These 

findings indicate that DNMT3A and DNMT3B act as both “writers” and “readers” of epigenetic marks 

and that their activities and specificities are regulated by specific histone modifications.  

The conclusion that DNMT3A and DNMT3B function primarily as de novo methyltransferases 

is based on several lines of evidence. First, DNMT3A and DNMT3B expression correlates with de novo 

methylation during development. Specifically, DNMT3A and DNMT3B are highly expressed in early 

embryos (as well as ESCs) and developing germ cells, and their expression is significantly 

downregulated in somatic cells and when ESCs are differentiated (18). In ESCs, DNMT3A transcription 

is mostly driven by an internal promoter, resulting in a shorter isoform known as DNMT3A2, which 

lacks the N-terminal 219 (mouse) or 223 (human) amino acids of full-length DNMT3A1 (Figure 2). 

DNMT3A2 expression decreases with ESC differentiation and is replaced by the DNMT3A1 isoform, 

which is ubiquitously expressed at low levels in most somatic tissues (25). DNMT3B produces multiple 



www.manaraa.com

 8 

alternatively spliced isoforms (~30 reported to date), many of which lack catalytic activity but may play 

regulatory roles in DNA methylation (26). In ESCs, the full-length isoform DNMT3B1, a catalytically 

active form, is the predominant product, and other isoforms, including the inactive DNMT3B6, are also 

expressed. In most somatic cells, DNMT3B expression is low, usually with both active (e.g. DNMT3B2) 

and inactive (e.g. DNMT3B3) isoforms (18, 25). 

Second, biochemical studies indicate that DNMT3A and DNMT3B behave as de novo 

methyltransferases do. In particular, recombinant DNMT3A and DNMT3B proteins show no preference 

for hemi-methylated DNA over unmethylated DNA in vitro, unlike DNMT1, which preferentially 

methylates hemi-methylated DNA (18, 27). Furthermore, in vitro and in vivo target analyses indicate that 

DNMT3A and DNMT3B could methylate cytosines at non-CpG sites such as CpA and CpT, albeit with 

lower efficiency compared to CpG methylation (28). Non-CpG methylation, which cannot be maintained 

during DNA replication, is mediated by de novo methyltransferases. 

Third, genetic studies provide definitive evidence for the involvement of DNMT3A and 

DNMT3B in de novo DNA methylation. Targeted disruption of both DNMT3A and DNMT3B blocks de 

novo methylation in mouse ESCs (mESCs) and early embryos, but has no effect on the maintenance of 

methylation at imprinted loci (29). Moreover, DNMT3A and DNMT3B cause de novo methylation when 

overexpressed in mammalian cells or ectopically expressed in transgenic flies or budding yeast (30-33). 

While DNMT3A and DNMT3B methylate many genomic loci redundantly, they also have preferred and 

distinct targets. For example, DNMT3A is more efficient than DNMT3B in methylating major satellite 

repeats at pericentric heterochromatin, whereas DNMT3B preferentially methylates minor satellite 

repeats in centromeric regions (32). Characterization of DNMT3A and DNMT3B knockout (KO) mice 

suggest that these enzymes play distinct roles in developmental processes. DNMT3A KO mice develop to 

term and show no overt defects at birth, but die at ~4 weeks of age. In contrast, disruption of DNMT3B 

leads to embryonic lethality at ~E12.5, with multiple developmental defects. DNMT3A/3B double KO 

(DKO) embryos exhibit more severe defects and die earlier (before E11.5) than DNMT3B KO embryos 

(29). DNA methylation analysis of E9.5 embryos indicate that DNMT3B is largely responsible for 

methylation of germline-specific genes, pluripotency genes, and many developmental genes and 
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DNMT3A and DNMT3B redundantly methylate some specific genes such as Brdt, Dpep3, Cytip, and 

Crygd (34). Conditional gene KO studies indicate that DNMT3A, but not DNMT3B, is essential for de 

novo methylation during gametogenesis, including the establishment of DNA methylation imprints (35). 

Indeed, immunofluorescence experiments show abundant expression of DNMT3A, but not DNMT3B, in 

fully grown oocytes (36). 

Consistent with their important roles in developmental processes in mice, DNMT3A and 

DNMT3B mutations are associated with human diseases (37). Somatic DNMT3A mutations occur 

frequently in acute myeloid leukemia (AML) and other hematologic malignancies (37). Many DNMT3A 

mutations have been identified, with the majority (>50%) of cases affecting Arg882 (R882) in the 

catalytic domain. Although almost all reported DNMT3A mutations in leukemia occur in only one allele, 

there is evidence that DNMT3A R882 mutant proteins have dominant-negative effects by interacting 

with wild-type DNMT3A to form functionally deficient complexes (38). DNMT3A mutations are also 

associated with Tatton Brown Rahman syndrome, an overgrowth disorder (37). Hypomorphic DNMT3B 

mutations account for ~50% of cases with ICF (Immunodeficiency, Centromeric instability, and Facial 

anomalies) syndrome, a rare recessive autosomal disorder characterized by hypomethylation of special 

genomic regions (most notably classical satellites 2 and 3 repeats) and chromosomal defects in 

lymphocytes and antibody deficiency, as well as facial dysmorphism, failure to thrive, and mental 

retardation (37). Several other ICF genes – ZBTB24 (zinc-finger- and BTB domain-containing 24), 

CDCA7 (cell division cycle associated 7), and HELLS (helicase, lymphoid-specific) – have also been 

identified (39, 40). HELLS (also known as LSH), a DNA helicase involved in chromatin remodeling, has 

been shown to regulate DNA methylation by affecting DNMT3B targeting to chromatin (41). However, 

little is known about the biological functions of ZBTB24 and CDCA7 and, in particular, their links to 

DNA methylation.  

 

DNMT3L 

DNMT3L was originally identified by sequence database analysis. The protein product contains 

an ADD domain, but not a PWWP domain, in the N-terminal region. Its C-terminal region shares 
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sequence homology with the catalytic domains of DNMT3A and DNMT3B, but lacks some sequence 

motifs essential for catalytic activity, including those required for AdoMet (methyl donor) binding 

(Figure 2) (8). 

Although DNMT3L has no methyltransferase activity, biochemical and genetic evidence 

suggests that it is an important regulator of de novo methylation.  DNMT3L interacts with DNMT3A and 

DNMT3B and significantly enhances their catalytic activity (42). Crystallographic studies reveal that the 

C-terminal region of DNMT3L directly interacts with the catalytic domain of DNMT3A, and the 

DNMT3A/3L dimer further dimerizes through DNMT3A-DNMT3A interaction, forming a tetramer with 

two active sites (43). Biochemical and structural data also indicate that the ADD domain of DNMT3L 

binds to the N-terminal tail of histone H3, specifically recognizing unmodified lysine 4 (H3K4), 

suggesting that DNMT3L plays a role in determining the specificity of de novo methylation (22). The 

expression pattern of DNMT3L during development is similar to that of DNMT3A and DNMT3B, with 

high expression in developing germ cells, early embryos and ESCs and low expression in most somatic 

tissues (42). DNMT3L KO mice are viable and grossly normal, suggesting that zygotic DNMT3L is not 

essential for development. However, both male and female KO mice fail to reproduce (42, 44). DNMT3L 

KO males have reduced testis size and are sterile, as they are unable to produce mature sperm 

(azoospermia). The spermatogenesis defect is due to loss of DNA methylation in germ cells, which 

results in reactivation of retrotransposons, inducing genomic instability, meiotic catastrophe, and 

ultimately apoptosis (45). On the other hand, DNMT3L KO females produce oocytes and are able to 

conceive, but their embryos die by mid-gestation due to failure to establish DNA methylation imprints in 

oocytes (42, 44). These studies suggest that DNMT3L is a critical accessory factor for DNMT3A for de 

novo methylation during gametogenesis. Indeed, the phenotype of DNMT3L KO mice is almost identical 

to that of mice with conditional DNMT3A deletion in germ cells (35). 

The genetic studies described above suggest that DNMT3L is functionally more important for 

DNMT3A than for DNMT3B in vivo, contrary to biochemical evidence that DNMT3L is equally 

efficient in stimulating the catalytic activities of both DNMT3A and DNMT3B in vitro. Little is known 

about what determines the functional specificity of DNMT3L. In contrast to the strong evidence that 
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supports the essential role for DNMT3L in de novo methylation during gametogenesis, its role in mESCs 

is poorly understood and controversial. It has been shown that Dnmt3L is required to silence ectopic 

integrated retroviral DNA in mESCs, and that Dnmt3L deficiency decreases their DNA methylation over 

time in culture (46, 47). Moreover, Dnmt3L heterochromatin foci localization depends on the presence of 

Dnmt3a2, but not on Dnmt3a or Dnmt3b, probably due to the specific interaction between Dnmt3L and 

Dnmt3a2 in mESCs (48). Together, these studies suggest that Dnmt3L is a positive regulator of de novo 

DNA methylation in mESCs. However, a recent report by Neri and colleagues suggests dual roles for 

Dnmt3L, both as a negative and positive regulator of DNA methylation, depending on genomic regions, 

in mESCs (49). In Chapter 3 of this dissertation, I aim to clarify the role of Dnmt3L and elucidate the 

molecular mechanism involved in de novo DNA methylation using Dnmt3L-deficienct mESCs. 

 

1.3 MAINTENANCE DNA METHYLATION DURING MAMMALIAN DEVELOPMENT 

 

Once DNA methylation patterns are established during early embryogenesis, they are maintained 

in somatic cells in a cell type-specific manner. During each round of DNA replication, DNA becomes 

hemi-methylated, as only CpGs on the parental strand remain methylated while CpGs on the newly 

replicated daughter strand are unmethylated. To re-establish the symmetry of CpG methylation and keep 

the specificity, the maintenance DNA methyltransferase activity recognizes hemi-methylated CpGs and 

methylates the corresponding CpGs on the daughter strand. Biochemical, cellular, and genetic evidence 

suggests that DNMT1 is the major maintenance methyltransferase (8). In addition, a multi-domain 

protein, UHRF1 (ubiquitin-like with PHD and RING finger domains 1), is essential for directing 

DNMT1 to DNA replication sites (50, 51). 

 

DNMT1 

Mouse DNMT1, the first mammalian DNA methyltransferase gene identified (52), has several 

transcription start sites and produces two major protein products. Transcripts initiated within a somatic 
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cell-specific exon encode the full-length DNMT1 protein that is expressed in somatic cell types, whereas 

transcripts initiated within an oocyte-specific exon utilize a downstream AUG as the translation initiation 

codon, resulting in the DNMT1o isoform that lacks the N-terminal 118 amino acids of full-length 

DNMT1 (Figure 2) (8). Both isoforms are equally functional in maintaining DNA methylation, although 

DNMT1o is more stable than DNMT1 (53).  

DNMT1 has an N-terminal regulatory domain and a C-terminal catalytic domain (Figure 2). 

While all DNMTs contain highly conserved DNA methyltransferase motifs in their catalytic domains, 

the DNMT1 and DNMT3 families show little sequence similarity in their regulatory domains. There are 

several unique domains in the N-terminal region of DNMT1 that confer its functional difference from 

DNMT3 enzymes. A region at the very N terminus mediates the interaction between DNMT1 and DNA 

methyltransferase associated protein 1 (DMAP1), a protein implicated in histone acetylation and ATM 

signaling. The DMAP1-interaction domain is absent in the more stable DNMT1o isoform (53), 

suggesting that this domain or the interaction between DNMT1 and DMAP1 may be involved in 

regulating DNMT1 stability. The DMAP1-interaction domain is followed by a proliferating cell nuclear 

antigen (PCNA) binding domain (PBD), which is required for the interaction with the DNA replication 

machinery, and a nuclear localization signal (NLS) (8). DNMT1 also contains a motif originally named 

as the replication foci-targeting sequence (RFTS). Recent evidence indicates that RFTS contains a 

ubiquitin-interacting motif (UIM) that recognizes ubiquitinated histone H3 at lysine 18 (H3K18ub), a 

histone modification that serves as a docking site for DNMT1 targeting to replication foci (54). 

Structural data obtained recently suggests that the RFTS domain also plays an autoinhibitory role in the 

regulation of DNMT1 activity by binding to the catalytic domain and blocks the catalytic center (55). 

Additionally, DNMT1 contains a CXXC domain, a cysteine-rich motif that binds unmethylated CpGs, 

and a pair of bromo-adjacent homology (BAH) domains, BAH1 and BAH2, with their role remaining 

unknown (8). 

Biochemical assays reveal that DNMT1 preferentially methylates hemi-methylated CpG 

dinucleotides, although it is capable of methylating unmethylated substrates as well (27). DNMT1 is 

constitutively expressed in proliferating cells. During S phase, DNMT1 is upregulated and associates 
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with the replication foci, suggesting that DNMT1-mediated methylation is coupled to DNA replication 

(56). Genetic inactivation of DNMT1 in mESCs results in global loss of DNA methylation, but does not 

affect de novo methylation of integrated provirus DNA (57, 58). Taken together, these results suggest 

that DNMT1 functions primarily as a maintenance methyltransferase. 

DNA methylation is dispensable in undifferentiated mESCs, as DNMT1 KO, DNMT3A/3B DKO, 

and DNMT1/3A/3B triple KO (TKO) mESCs show no defects in viability and proliferation, but these 

cells die when induced to differentiate (29, 32, 58-60). A recent study shows that human ESCs (hESCs) 

require DNMT1, but not DNMT3A and DNMT3B, for survival (61). mESCs and hESCs represent 

different pluripotent states, with hESCs resembling the more mature epiblast state, which may explain 

the sensitivity of hESCs to hypomethylation. DNMT1 is also required for the survival of mouse 

embryonic fibroblasts (MEFs) and the human colorectal cancer cell HCT116 (62, 63). These findings 

suggest crucial roles for DNMT1 in cellular differentiation and in the viability of differentiated cells. 

Consistent with this notion, complete inactivation of DNMT1 results in the arrest of mouse embryonic 

development around E9.5, when the embryo is in the process of differentiating into the three germ layers 

(58). In human, missense DNMT1 mutations in the RFTS of the N-terminal regulatory domain, which 

likely result in hypomorphic alleles, have been identified in two related neurodegenerative disorders, 

hereditary sensory and autonomic neuropathy with dementia and hearing loss type IE (HSAN IE) and 

autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) (37). While the 

mechanisms by which these mutations lead to the disease phenotypes are unknown, changes in DNA 

methylation and gene expression likely play an important role. 

 

UHRF1 

UHRF1, also known as nuclear protein of ~95-kDa (NP95 in mouse) and inverted CCAAT box-

binding protein (ICBP90 in human), is a multi-domain protein. Genetic studies demonstrate that UHRF1 

is essential for maintaining DNA methylation. Similar to the phenotype of DNMT1 deficiency, 

disruption of UHRF1 leads to embryonic lethality and global DNA hypomethylation (50, 51, 64). 

Cellular studies also suggest functional interactions between DNMT1 and UHRF1. Both proteins are 
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enriched at DNA replication foci during the S phase in normal cells, but DNMT1 fails to localize to these 

foci in UHRF1 KO cells (50, 51). These findings indicate that UHRF1 is a critical regulator of 

maintenance methylation by directing DNMT1 to hemi-methylated CpG sites.  

UHRF1 has five conserved domains: a ubiquitin-like domain (UBL), a tandem tudor domain 

(TTD), a plant homeodomain (PHD), a SET and RING associated (SRA) domain, and a Really 

Interesting New Gene (RING) domain (Figure 2). The mechanisms by which UHRF1 controls DNMT1 

localization and DNA methylation are complex, and all the conserved domains, with the exception of 

UBL, have been implicated. UHRF1 interacts with DNMT1 and likely mediates its recruitment to 

chromatin, as the TTD and PHD of UHRF1 act in combination to recognize the trimethylated lysine 9 of 

histone H3 (H3K9me3) mark, and additionally, the PHD finger binds to unmodified arginine 2 of histone 

H3 (H3R2) (65, 66). The SRA domain preferentially binds hemi-methylated DNA and likely plays an 

important role in loading DNMT1 onto newly synthesized DNA substrates (50, 51). The RING finger 

domain has E3 ubiquitin ligase activity. UHRF1 has been shown to ubiquitinate histone H3 at lysine 18 

(H3K18ub) in mammalian cells (54) and at lysine 23 (H3K23ub) using the cell-free system of Xenopus 

egg extracts (67). Both studies show that UHRF1-dependent histone H3 ubiquitination is required for 

maintenance DNA methylation, suggesting that the H3 ubiquitination mark(s) provides a binding site(s) 

for DNMT1 (54, 67). Together, these studies indicate that a complex crosstalk between different histone 

modifications takes place in the regulation of maintenance DNA methylation. 

The UHRF1 PHD finger specifically recognizes and binds unmodified, but not H3R2-

methylated, N-terminal tail of H3, which suggests that H3R2 methylation might play a role in the 

regulation of maintenance DNA methylation. The role of arginine methylation in the regulation of DNA 

methylation is largely unknown. This site is the major substrate of PRMT6, an arginine 

methyltransferase responsible for asymmetric dimethylation of H3R2 (H3R2me2a) (68-70). In Chapter 

4 of this dissertation, I investigated whether H3R2me2a plays a role in the regulation of maintenance of 

DNA methylation by impairing the recruitment of UHRF1 to chromatin. 
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1.4 DNA METHYLATION IN CANCER 

 

 Cancer is a disease of genetic, as well as epigenetic, abnormalities. The latter is supported by a 

great outburst of knowledge in chromatin regulation and its importance to aberrant gene expression in 

cancer. This led to the concept of “the cancer epigenome”, which encompasses countless alterations that 

are not caused by changes in the DNA sequence (i.e. mutations), and rather consist of covalent 

modifications to DNA, RNA and chromatin proteins, including histones and non-histone substrates. The 

epigenetics field is rapidly evolving, in part due to technological advances such as next-generation 

sequencing techniques, which have been widely applied to identifying the structure and organization of 

chromatin, including DNA methylation, and with this has transform our understanding of normal 

development and cancer (71). 

In normal somatic cells, CGIs associated with gene promoters are usually devoid of DNA 

methylation, except in special genomic regions, such as genes located in the inactive X chromosome, 

inactive imprinted genes and germ-cell specific genes (5, 72). In contrast, alterations of DNA 

methylation patterns are frequently detected in cancer, as tumor cells present loci-specific CpG 

hypermethylation or global DNA hypomethylation (4) (Figure 3).  
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Figure 3: Alterations of DNA methylation patterns in cancer cells.  

A. Typical DNA methylation patterns in normal cells, including high levels of methylation in repetitive 

sequences and gene bodies and lack of methylation in CGIs associated with promoter regions. B. 

Alterations in DNA methylation patterns frequently observed in cancer cells, including global 

hypomethylation and abnormal promoter hypermethylation, which contributes to genomic instability and 

tumor suppressor silencing, respectively. Open and black filled circles indicate unmethylated and 

methylated CpG dinucleotides, respectively. White boxes labeled with E indicate exons. Black horizontal 

thin arrow in Exon 1 indicates transcription, which is blocked in B as indicated by the cross. White 

horizontal thick arrow indicates repetitive sequences. 
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CpG island DNA hypermethylation 

Specific gain of DNA methylation (i.e. DNA hypermethylation) in the CGIs of promoters, which 

is associated with transcriptional silencing, is among the most investigated epigenetic alteration in 

cancer, as multiple studies showed that most cancer types have high numbers of genes with 

hypermethylation, although the numbers vary in a patient-specific manner (4, 71-74). In certain cases, 

the affected CGIs control the expression of tumor suppressor genes, and therefore, DNA 

hypermethylation acts as an alternative mechanism for gene inactivation leading to tumor suppressor 

silencing and loss of function, favoring malignant transformation (4, 72). For example, promoters of 

tumor suppressor genes involved in pathways that control cell cycle progression, like Rb, CDKN2A and 

p73, or that regulate DNA repair, such as MLH1, BRCA1, MGMT and WRN are found hypermethylated 

in different tumor types. Additionally, key genes in cancer biology that are silenced by CGI promoter 

hypermethylation include VHL, ER, RARb2, APC, DKK1, GATA4, GATA5, ID4, DAPK, and HOXA9 

(71, 72). Moreover, DNA hypermethylation has also been implicated in loss of monoallelic expression of 

imprinted genes (i.e. loss of imprinting) at the H19 locus, leading to the activation of the insulin-like 

growth factor 2 (IGF2) and initiation of tumor development and progression of colon cancer (75-77). 

Genomic studies in tumors revealed that cancer-specific mutations are frequently detected in 

genes that regulate DNA methylation, which may lead to DNA hypermethylation. For instance, 

mutations in TET2, IDH1 (isocitrate dehydrogenase 1) and IDH2 are found in different types of 

leukemias and brain cancer, including gliomas and other types of brain tumors, although they are 

mutually exclusive (4, 78, 79). TETs are enzymes that catalyze the oxidation of 5mC into 5hmC in a 

reaction dependent on the cofactor a-ketoglutarate (80). Patients with mutations in TET2 are commonly 

heterozygous and result in loss of function (79). Similarly, mutations of IDH1 and IDH2 impair their 

normal enzymatic functions and result in the abnormal conversion of a-ketoglutarate into 2-

hydroxyglutarate, a metabolite that inhibits the catalytic activity of TET2 (78). As a consequence, 

inhibition of the TET pathway by different mechanisms results in DNA hypermethylation due to the 

accumulation of 5mC at specific regions. Interestingly, recent studies indicate that under normal 



www.manaraa.com

 18 

conditions, TET proteins reside at the CGIs of active promoters and enhancers and contribute to the 

maintenance of their hypomethylated state (81-84), suggesting that upon TET inhibition, these locations 

might become rapidly hypermethylated. Consistent with this hypothesis, IDH1 mutations in gliomas 

correlate with CpG island DNA hypermethylation phenotype (CIMP), a concept used to classify different 

types of cancer (71). 

Alternative mechanisms have also been proposed to explain DNA hypermethylation in cancer. 

One of them is strictly linked to bivalent promoters, which are those promoters that simultaneously 

contain the H3K4me3 active and H3K27me3 repressive marks and are associated with poised 

transcriptional state of genes required for ESC differentiation (85). Based on correlations observed in 

studies in colon cancer, it has been proposed that an epigenetic switch occurs at these promoters during 

tumorigenesis, where expanded population of stem cells undergo replacement of temporal H3K27me3 

repression by a more stable silencing mediated by H3K9me3 and DNA methylation (71). However, these 

mechanisms require further characterization and validation. 

 

Global DNA hypomethylation 

Global loss of DNA methylation (i.e. DNA hypomethylation) was initially observed in human 

tumors compared to healthy tissue over 30 years ago (86), with H-ras and K-ras as the first examples of 

hypomethylated oncogenes in human cancer samples (87). Early studies comparing primary tumors, 

normal tissues and metastatic samples isolated from the same patients showed that DNA 

hypomethylation was progressive and correlates with metastatic capacity (86, 88). Subsequent studies 

revealed that global DNA hypomethylation is a common feature of cancer cells, where it has been 

associated to activation of oncogenes, derepression of retrotransposons and genomic instability (72). 

Several lines of evidence suggest the involvement of DNA hypomethylation as an early oncogenic event 

that leads to transformation and tumorigenesis. Firstly, treatment with DNA methylation inhibitors has 

been shown to convert low-metastatic cancer cell lines to high-metastatic versions, and animals fed with 

methyl-deficient diet result in global DNA hypomethylation and formation of liver tumors (89). 

Secondly, mice carrying a hypomorphic Dnmt1 allele show genome-wide hypomethylation and develop 
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T cell lymphomas with a high frequency of chromosome 15 trisomy (90). Induction of DNA 

hypomethylation in Nf1+/- p53+/- mice also promotes tumor development by increasing the rate of loss of 

heterozygosity, as a result of chromosomal instability due to hypomethylated centromeric and pericentric 

regions (91). Finally, DNA hypomethylation results in loss of imprinting, which may also contribute to 

tumorigenesis (92). 

Recent correlation analysis between genomic and gene expression profiling in tumors samples 

has shed some light into the molecular aspects of this dysregulation, and a few mechanisms have been 

proposed to explain how DNA hypomethylation occurs in cancer cells. For instance, loss-of-function 

mutations in DNMT3A are commonly found in hematological malignancies in adults and are implicated 

in the development of leukemias (93). Experiments using mouse hematopoietic stem cells (HSCs) 

revealed that Dnmt3a deletion results in increased self-renewal capacity instead of differentiation, 

leading to the expansion of this population, suggesting a potential early mechanism for malignant 

transformation. Moreover, Dnmt3a deficient HSCs show substantial global DNA hypomethylation (94). 

Mice recipients of Dnmt3a-null HSCs develop multiple myeloid and lymphoid leukemias, recapitulating 

human malignancies containing DNMT3A mutations (95-97). In contrast, Dnmt3a heterozygous HSCs 

are prone to develop only myeloid leukemias (97), suggesting that DNMT3A behave as a 

haploinsufficient tumor suppressor gene in myeloid leukemias (93). In clear agreement with this 

hypothesis, 65% of the DNMT3A mutations found in acute myeloid leukemia (AML) are heterozygous 

missense mutations altering the residue R882 at the C-terminal catalytic domain of the protein (93). It 

has also been shown that the R882H mutation (R878H in mouse) has a dominant-negative effect on the 

wild-type DNMT3A protein, as the mutant DNMT3A can dimerize with wild-type protein (38), but the 

R882H mutation disrupts the formation of tetramers, which have significantly higher activity. Therefore, 

in the absence of functional tetramers, mutant DNMT3A dimers with impaired catalytic activity lead to 

global DNA hypomethylation observed in AML patients with R882 mutation (93, 97-99). 

Furthermore, alterations of the maintenance methylation machinery have also been proposed to 

drive the loss of DNA methylation in cancer. In fact, upregulation of UHRF1 expression has been 

detected in different types of cancer and correlates with global DNA hypomethylation and tumorigenesis 
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(100-105). As mentioned previously, UHRF1 has E3 ubiquitin ligase activity through its RING domain 

and it has been shown to ubiquitinate DNMT1, DNMT3A and UHRF1 itself, leading to their degradation 

and consequently DNA hypomethylation in cancer cells (104, 106-108). Moreover, genetic experiments 

using zebrafish as a model demonstrate that overexpression of human UHRF1 in hepatocytes leads to 

mislocalization of DNMT1 in the nucleus and to the reduction of its protein levels due to proteosomal 

degradation, which results in global DNA hypomethylation and hepatocellular carcinoma (109). 

Importantly, DNA hypomethylation by UHRF1 overexpression causes p53-dependent senescence, and 

tumorigenesis only occurs after senescence is bypassed (109). In addition to the described mechanisms, 

many molecular defects that lead to DNA hypomethylation likely alter the function of the DNMT1-

UHRF1 complex. For example, DNMT1 phosphorylation by AKT and/or PKC has been shown to 

abrogate the formation of the DNMT1-UHRF1 complex in cancer cells (110). Importantly, global DNA 

hypomethylation through disruption of the DNMT1-UHRF1 complex has also been reported to cause 

transformation in non-tumorigenic cells and development of tumors in mice (110, 111).  

Despite the progress, the mechanisms underlying DNA hypomethylation in cancer are largely 

unclear. In Chapter 4, I identified a novel epigenetic mechanism that negatively regulates DNA 

methylation by inhibiting the recruitment of the DNMT1-UHRF1 complex to chromatin, which is 

dysregulated in cancer leading to global DNA hypomethylation. 

 

1.5 CROSSTALK BETWEEN DNA METHYLATION AND ARGININE METHYLATION 

 

 The current knowledge about the activity and function of DNA methylation indicates that 

DNMTs do not have an evident specificity for target DNA sequences rather than CpG dinucleotides, 

which implies that the chromatin structure drives their correct targeting within the genome. Multiple 

lines of evidence support the interaction between DNA methylation and different epigenetic 

mechanisms. Indeed, the regulation of DNA methylation by histone modifications, particularly histone 

lysine methylation, is well documented. For example, H3K9me3 generally correlates with DNA 
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methylation, whereas H3K4me3 inhibits DNA methylation. However, much less is known about the 

crosstalk between DNA methylation and arginine methylation. 

 

Arginine methylation 

Modification of proteins by methylation of arginine residues is an important post-translational 

modification (PTM) that is involved in several biological process, including transcription regulation, 

DNA damage response, mRNA splicing and translation and modulation of different signaling pathways 

(112, 113). Recent proteomic studies indicate that arginine methylation is as common as other more 

studied PTMs, such as phosphorylation and ubiquitination, as it regulates the function of multiple 

cytoplasmic and nuclear targets, including histone and non-histone substrates (114). The major role for 

arginine methylation is the regulation of the binding by interacting proteins as, in contrast to other PTMs, 

methylation does not change the charge of arginine residues and instead creates a docking site for 

“readers”, such as tudor domain-containing proteins (115). Consistent with its importance in multiple 

biological processes, dysregulation of arginine methylation is associated with multiple human diseases, 

including cancer (112, 113).  

Arginine methylation is carried out by the protein arginine methyltransferase (PRMT) family, 

which consists of nine members that fall into three categories. Type I (PRMT1, PRMT2, PRMT3, 

PRMT4, PRMT6, and PRMT8) and type II (PRMT5 and PRMT9) enzymes catalyze the formation of w-

NG-monomethylarginine (MMA) as an intermediate before generating w-NG,NG-asymmetric 

dimethylarginine (aDMA) and w-NG,N¢G-symmetric dimethylarginine (sDMA), respectively, whereas the 

sole type III enzyme PRMT7 catalyzes only the formation of MMA (112, 116). Overexpression and 

mutation of PRMTs are frequently observed in cancer (Table 1). 
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Table 1: The human protein arginine methyltransferase family in cancer. 

Enzyme Other name Modification Cancer implication References 

PRMT1  ADMA 
 

up to 5.5% overexpression (uterine, bladder, 
pancreas, breast, lung); up to 2.8% mutated 
(cervical, uterine, melanoma); other 
alterations (MLL) 

(113, 117-121) 

PRMT2  ADMA 
 

up to 3.5% overexpression (ovarian, 
bladder, AML, sarcoma, breast); up to 2.8% 
mutated (colon, uterine, lung); up to 1.4% 
deletion (stomach, colon) 

(113, 117, 118) 

PRMT3  ADMA 
 

up to 3.8% mutated (uterine, lung, stomach, 
colon, melanoma); up to 2% overexpression 
(bladder, stomach, sarcoma); regulated by 
DAL-1/4 tumor suppresor gene 

(113, 117, 118, 
122) 

PRMT4 CARM1 ADMA 
 

up to 11.3% overexpression (uterin, ovarian, 
ACyC, ACC, sarcoma, glioma, colon, 
breast, prostate, lung, liver); up to 2% 
mutated (uterine, bladder, lung, head and 
neck, melanoma) 

(113, 117, 118, 
120, 123-125) 

PRMT5  SDMA 
 

up to 4% mutated (uterine, head and neck, 
bladder, colon, melanoma, leukemia, 
lymphoma); up to 3% overexpression 
(ovarian, lung, sarcoma, glioma, breast, 
liver, glioblastoma) 

(113, 117, 118, 
126-128) 

PRMT6  ADMA 
 

up to 3.6% overexpression (prostate, 
melanoma, sarcoma, bladder, lung); up to 
1.6% mutated (lung, uterine, liver) 

(113, 117, 118, 
121, 129) 

PRMT7  MMA 
 

up to 6.6% deletion (prostate, ovarian, 
breast, AML); up to 4% mutated (bladder, 
lung, uterine, stomach, melanoma, colon) 

(113, 117, 118, 
130) 

PRMT8  ADMA 
 

up to 11% overexpression (ovarian, uterine, 
bladder, glioma, sarcoma, head and neck, 
breast, glioblastoma); up to 7% mutated 
(lung, melanoma, colon) 

(117, 118) 

PRMT9  SDMA up to 3.8% mutated (uterine, stomach, 
colon, bladder, lung, esophageal, liver, 
glioblastoma); up to 3.6% overexpression 
(uterine, prostate, ovarian, sarcoma, breast, 
lung) 

(117, 118) 

MMA, monomethylarginine; ADMA, asymmetric dimethylarginine; SDMA, symmetric 

dimethylarginine; AML, acute myeloid leukemia; ACyC, Adenoid Cystic Carcinoma; ACC, 

Adrenocortical Carcinoma. Adapted from the original version (131). 



www.manaraa.com

 23 

Regulation of DNA methylation by histone arginine methylation 

A few studies explored the crosstalk between histone arginine methylation and DNA 

methylation. Zhao and colleagues reported that the protein arginine methyltransferase 5 (PRMT5) 

mediates histone H4R3 symmetric dimethylation (H4R3me2s), which serves as a binding site for 

DNMT3A through its ADD domain (132). However, this mechanism remains to be confirmed, as other 

studies reported evidence that does not support it (23, 133). Using biochemical approaches, Otani and 

colleagues were unable to reproduce the binding between the ADD domain of DNMT3A and H4R3me2s 

peptide (23). Likewise, another study using ChIP-seq analysis reported that, despite the fact that 

H4R3me2s was found in CpG-rich promoters, downregulation of this modification with PRMT5 

knockdown did not alter DNA methylation (133). Therefore, the role of PRMT5 in de novo DNA 

methylation is still controversial.  

A recent study identified the protein methyltransferase-like 23 (Mettl23) as a new arginine 

methyltransferase that catalyzes asymmetric dimethylation of histone H3 at arginine 17 (H3R17me2a) in 

maternal histone H3.3, and that this modification is required for the incorporation of H3.3 in the de novo 

assembly of paternal nucleosomes in zygotes (134). Notably, this study further showed that H3R17me2a 

and Mettl23 are required for the recruitment of TET3 to the male pronucleus, which results in the active 

demethylation of the paternal genome to facilitate efficient reprograming (134). 

Together, these studies suggest possible roles for histone arginine methylation in the regulation 

of DNA methylation in mammals. Nevertheless, the functional and mechanistic links between arginine 

methylation and DNA methylation remain largely unknown.  

 

PRMT6 and its role in cancer 

PRMT6 is the primary enzyme responsible for catalyzing methylation of histone H3 at arginine 2 

(H3R2) to generate the aDMA form (H3R2me2a), which is an epigenetic modification associated with 

transcriptional repression (68-70, 135). In fact, multiple studies have shown that PRMT6-dependent 

H3R2me2a is mutually exclusive with H3K4me3, and that it inhibits the recruitment of the MLL 

complex to the N-terminal tail of histone H3 (68-70, 135). Therefore, under normal conditions, PRMT6 
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acts a transcriptional repressor by inhibiting H3K4me3 and the recruitment of coactivator complexes to 

gene promoters.  

Importantly, PRMT6 is frequently overexpressed in cancer cells and has been implicated in 

different tumorigenic functions involving the methylation of histones and non-histones targets (113). 

Among these, it has been shown that PRMT6 functions both as a transcription co-activator of oncogenic 

pathways and as a repressor of tumor suppressor genes (113, 136). Studies using cancer cell lines have 

reported that PRMT6 binds to the hormone receptors ER, AR, GR, and PR-B and facilitates their 

transcriptional functions (137, 138). It also binds to PELP1, a proto-oncogene in breast cancer that 

function as an ER co-activator (139). On the other hand, PRMT6 serve as a transcriptional repressor of 

cyclin-dependent kinase (CDK) inhibitors p21 and p16 in osteosarcoma and breast cancer cells, thus 

acting as an oncogene that promotes cell proliferation and prevents senescence (140-142). Moreover, p21 

and p16 are also methylation substrates of PRMT6, which results in inhibition of their cell cycle 

regulatory functions (143, 144). PRMT6 also represses transcription of the tumor suppressor gene Trp53, 

and PRMT6 overexpression results in lower levels of p53 (145). In addition to regulating transcription, 

PRMT6 oncogenic functions also involve the regulation of alternative splicing (136, 138, 139). 

The evidence described above indicates that PRMT6 has important roles in cancer development 

and progression. However, it is not clear whether PRMT6 activity is involved in the early steps of 

malignant transformation, or it is required for tumor progression. Moreover, the significance of the 

transcriptional functions of PRMT6 in tumorigenesis remains to be determined. In Chapter 4 of this 

dissertation, I discovered a new role for PRMT6 as a negative regulator of maintenance DNA 

methylation and showed that upregulation of PRMT6 contributes to global loss of DNA methylation in 

cancer cells. 
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CHAPTER 2: Materials and Methods 

 

 

 

Part of this chapter is based upon: Veland, N., Hardikar, S., Zhong, Y., Gayatri, S., Dan, J., Strahl, B.D., 

Rothbart, S.B., Bedford, M.T. and Chen, T. (2017) The Arginine Methyltransferase PRMT6 Regulates 

DNA Methylation and Contributes to Global DNA Hypomethylation in Cancer. Cell Rep, 21, 3390-

3397. 

 

 

Used with permission of Elsevier. 
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Mice: The Dnmt3L null allele, generated by Hata et al. (42), was maintained on the 129 

background. Zygotic Dnmt3L knock-out (Dnmt3L zKO) and Dnmt3L wild-type zygotes and blastocysts 

were obtained from inter-crosses between heterozygous (Dnmt3L+/-) mice, whereas maternal Dnmt3L 

KO (Dnmt3L mKO) and double maternal and zygotic knock-out (Dnmt3L mzKO) zygotes and 

blastocysts were obtained from crosses between homozygous (Dnmt3L-/-) females and Dnmt3L+/- males.  

Dnmt12lox/+ knock-in chimera mice were backcrossed into C57BL/6J strain background. Then, 

this mice were crossed with Zp3-Cre transgenic mice to activate the 3XFlag-Dnmt1 knock-in allele, and 

their female progeny was crossed with wild-type C57BL/6J mice to generate Dnmt1Flag/+ mice. 

Heterozygous intercrossed provide homozygous (Dnmt1Flag/Flag) knock-in mice. 

All procedures were performed according with the National Institutes of Health Guide for the 

Care and Use of Laboratory animals, with Institutional Care and Use Committee-approved protocols at 

The University of Texas MD Anderson Cancer Center (MDACC). 

 

Isolation of zygotes and derivation of mouse embryonic stem cells from blastocysts: For 

isolation of zygotes and blastocysts, Dnmt3L heterozygous or homozygous null mice were superovulated 

and mated with wild-type males. Zygotes were collected from the oviducts at E0.5 and released into a 

hyaluronidase/M2 medium (Millipore) for dissociation. Derivation of mouse embryonic stem cells 

(mESCs) was performed essentially as previously described (146). Briefly, mice were euthanized at E3.5 

and blastocysts were flushed out of the uterus using M2 medium (Sigma). Then, blastocysts were placed 

on a feeder cell layer of irradiated mouse embryonic fibroblasts in Serum-free ES medium with 2i, which 

consist of a 1:1 mixture of Dulbecco modified Eagle medium-F12/N-2 (DMEM-F12 supplemented with 

N-2, Invitrogen) and Neurobasal/B27 (Neurobasal supplemented with B27, Invitrogen) with 0.5% 

(vol/vol) penicillin- streptomycin (Invitrogen), 1 mM GlutaMAX (Invitrogen), 0.5 mM sodium pyruvate 

(Invitrogen), 0.1 mM non-essential amino acids (Invitrogen), 0.1 mM 2-mercaptoethanol (Sigma), 103 IU 

of LIF (Millipore), 1 µM PD0325901 and 3 µM CHIR99021 (S1036 and S2924, respectively, 

Selleckchem). After blastocyst hatching, the inner cell mass clumps were picked under the microscope 

and plated into 96-well plate with feeder cells. The newly established mESCs lines were expanded, 
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adapted to DMEM FBS mESC medium [DMEM supplemented with 15% fetal bovine serum 

(Invitrogen), 0.5% (vol/vol) penicillin- streptomycin (Invitrogen), 0.1 mM non-essential amino acids 

(Invitrogen), 0.1 mM 2-mercaptoethanol (Sigma), 103 IU of LIF (Millipore)] and then either frozen or 

used for further analysis. The cells were then normally grown on gelatin-coated petri dishes without 

feeder cells.  

 

Cell culture and manipulations: For the generation of stable mESCs clones expressing Myc-

Dnmt3L, Myc-Dnmt3L F297D, Myc-Dnmt3a1, Myc-Dnmt3a2, Myc-PRMT6 or Myc-PRMT6 E155Q, 

cells transfected with the corresponding plasmids were seeded at low density on dishes coated with 

feeder cells, selected with 6 µg/mL of Blasticidin S HCl (Gibco) for 7-10 days, and colonies were 

picked. Transfection was performed using Lipofectamine 2000 (Invitrogen). Experiments where cells 

were treated with cycloheximide (C4859, Sigma) were carried out at 100 µg/mL. MG-132 (M7449, 

Sigma) was used at 10 µM, while Bafilomycin A1 (B1793, Sigma) at 125nM. For all treatments, DMSO 

was used as control. Human cancer cell lines were cultured according to instructions of American Type 

Culture Collection. For PRMT6 knockdown, MCF7 cells transfected with shRNA plasmids were 

selected and maintained in medium containing 1 µg/ml of puromycin (Gibco). To inhibit PRMT6 

activity, cells were treated with 10 µM of MS023 (147) 

 

Antibodies: For Western blots: anti-Myc (Sigma M4439; 1:5,000), anti-Flag (Sigma F3165; 

1:5,000), anti-DNMT1 (Cell Signaling 5032; 1:1,000), anti-DNMT1 N-terminal (Novus Biologicals 100-

264; 1:1,000), anti-Dnmt3a (Abcam 13888; 1:2,000), anti-Dnmt3b (Abcam 13604; 1:2,000), anti-

Dnmt3L (Cell Signaling 12309; 1:1,1000), anti-p53 (Cell Signaling 2524; 1:1,1000), anti-LC3B (Cell 

Signaling 2775; 1:1,1000), anti-UHRF1 (Cell Signaling 12387; 1:1,000), anti-PRMT6 (Bethyl A300-

929A; 1:2,000), anti-PCNA (Cell Signaling 2586; 1:8,000), anti-Usp7 (Cell Signaling 4833; 1:1,000), 

anti-HP1a (Thermo Fisher PA5-17441; 1:2,000), anti-a-tubulin (Cell Signaling 2144; 1:2,000), anti-b-

actin (Sigma A5441; 1:5,000), anti-H3R2me2a (Millipore 05-808; 1:2,000), anti-H3K4me3 (Active 
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Motif 39159; 1:2,000), anti-H3K9me3 (Millipore 07-442; 1:2,000), anti-H3 (Cell Signaling 9715; 

1:8,000), anti-Oct4 (Abcam 19857; 1: 1,000), anti-Sox2 (Abcam 97959; 1: 1,000), anti-Nanog (Abcam 

80892; 1: 1,000), and anti-pan asymmetric dimethyl arginine (Rme2a) (Cell Signaling 13522; 1:2,000). 

For immunofluorescence (IF): anti-Oct4 (Abcam 19857; 1:300), anti-Sox2 (Abcam 97959; 1:300), and 

anti-Nanog (Abcam 80892; 1:300). For chromatin immunoprecipitation (ChIP): anti-UHRF1 (Diagenode 

C15410258), anti-H3R2me2a (Abcam 175007), and anti-H3 (Abcam 1791). For DNA methylation: anti-

5mC (Millipore MABE146; 1:1,000 for dot blot, 1:2,000 for IF, 2 µg for MeDIP), anti-5hmC (Active 

Motif 39769; dilution for 1:1,000 for IF). 

 

Plasmid constructs: The vectors containing Myc-tagged Dnmt3L, Dnmt3a1 and Dnmt3a2 were 

generated by PCR amplification of the corresponding mouse cDNA from mESCs, using the primers 

indicated in Table 2. Amplified PCR products were cloned into the pCAG-IRESblast vector (32). The 

pCAG-Myc-PRMT6-IRESblast vector was generated by sub-cloning Myc-tagged human PRMT6 cDNA 

into the pCAG-IRESblast vector. The Dnmt3L F297D and PRMT6 E155Q point mutations were 

introduced by PCR-based mutagenesis (see Table 2 for primer sequences). The pGIPZ (tGFP-IRES-

Puro) control and PRMT6 shRNA plasmids were obtained from GE Healthcare Dharmacon. Untagged 

Dnmt1 with alternative translation start site were cloned into the of pCAG-HA-IRESblast (148), using 

SpeI and NotI  to remove the HA tag. 

 

Southern blot analysis: DNA methylation levels at major satellite repeats, minor satellite repeats 

and intracisternal A-particle (IAP) retrotransposons were analyzed by Southern blot after digestion of 2 

µg of genomic DNA with the methylation-sensitive restriction enzymes MaeII (Roche)  or HpaII (New 

England Biolabs) as previously reported (32). Briefly, digested DNA was separated by agarose gel 

electrophoresis and then transferred onto nylon membranes. For hybridization, the membranes were 

incubated with biotin-labeled probes (500 ng for major and minor satellites and 2.5 µg for IAP) 
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overnight at 42°C. Signal detection was performed using North2South Chemiluminescent Hybridization 

and Detection Kit (Thermo Scientific). See Table 2 probes sequences. 

 

Bisulfite sequencing: For bisulfite sequencing, genomic DNA was treated for bisulfite 

conversion using the EZ DNA Methylation kit (Zymo) and then used as template to amplify the 45S 

rDNA promoter with Taq DNA polymerase (Qiagen) using primers described in the Table 2. PCR 

conditions consisted of 40 cycles of denaturation at 94°C for 30 sec, annealing for 30 sec at 60°C and 

extension at 72°C for 30 sec. Following a final extension at 72°C for 5 min, PCR products were gel 

purified and directly ligated into pMiniT 2.0 using the NEB PCR cloning kit (New England Biolabs) 

according to the manufacturer's protocol. Qiagen Miniprep DNA was sequenced and results were 

analyzed with QUMA web-based quantification tool for methylation analysis (http://quma.cdb.riken.jp) 

(149). Percentages of methylated CpG sites were calculated from individual clones. 

 

RNA isolation and RT-qPCR: Total RNA was from ESCs using the Tryzol (Invitrogen) 

according to the manufacturer's instruction, followed by reverse transcription (RT) using ProtoScript 

First Strand cDNA Synthesis kit (New England Biolabs) to generate cDNA. Relative quantification of 

mRNA levels was carried out by RT-qPCR using iTaq Universal SYBR Green Supermix (Bio-Rad) in 

the ABI 7900 Real-Time PCR system (Applied Biosystems) using primers provided in Table 2.  

 

Chromatin immunoprecipitation (ChIP): ChIP experiments were performed according to the 

Abcam X-ChIP protocol with modifications. Briefly, a total of 1 x 107 of mESC or MCF7 cells were 

cross-linked with 1% formaldehyde for 10 min at room temperature. Fixation reaction was quenched 

with 125 mM glycine for 5 min. Cells were washed twice with 1X PBS, lysed in SDS buffer [50 mM 

Tris-HCl (pH 8.1), 10 mM EDTA, 1% SDS and 1X protease inhibitor cocktail (Thermo Scientific)] and 

sonicated for 50 cycles (30 sec ON, 30 sec OFF) using Bioruptor Plus (Diagenode) to obtain chromatin 

fragments of 300-500 bp.  Sonicated chromatin was centrifuged at 14.5 K rpms for 10 min at 4°C, and 

the supernatant was 5-fold diluted with dilution buffer [16.7 mM Tris-HCl (pH 8.1), 167 mM NaCl, 1.2 
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mM EDTA, 1% Triton X-100, 0.1% SDS and 1X protease inhibitor cocktail (Thermo Scientific)]. Each 

sample was pre-cleared with 30 µl of Dynabeads M-280 sheep anti-rabbit IgG (Thermo Scientific) for 2 

hours at 4°C, followed by incubation with specific antibodies overnight at 4°C. Samples were incubated 

with Dynabeads M-280 sheep anti-rabbit IgG for 1 hour at 4°C, followed by high stringency washes. 

Beads were eluted twice at room temperature in elution buffer (100 mM NaHCO3, 1% SDS), and reverse 

cross-linking was performed overnight at 65°C with 200 mM NaCl. Samples were then incubated with 

RNase A at 37°C for 30 min followed by incubation with proteinase K at 55°C for 2 hours, and DNA 

was purified using the QIAquick PCR Purification kit (Qiagen). Enrichment at selected loci was detected 

by qPCR (see Table 2 for primer sequences) using iTaq Universal SYBR Green Supermix (Bio-Rad). Ct 

values were normalized against 1% input. 

 

Methylated-DNA immunoprecipitation (MeDIP): MeDIP was performed as described 

previously (150). RNA-free genomic DNA was sonicated for 12 cycles (30 sec ON, 30 sec OFF) using 

Bioruptor Plus (Diagenode) to obtain DNA fragments of 300-1000 bp. After sonication, a portion of 

DNA was separated as input control. Each DNA sample was incubated with 2 µg of anti-5mC mouse 

antibody (Millipore) in MeDIP buffer [10 mM Na-Phosphate (pH 7.0), 140 mM NaCl, and 0.05% Triton 

X-100] for 3 hours at 4°C. Then, the samples were incubated with 30 µl of Dynabeads M-280 sheep anti-

mouse IgG (Thermo Scientific) for 1 hour at 4°C, followed by three washes with MeDIP buffer. Beads 

were incubated with proteinase K overnight at 55°C in constant agitation, and DNA from MeDIP and 

input were purified using the QIAquick PCR Purification kit (Qiagen). Methylated DNA enrichment at 

selected loci was detected by qPCR (see Table 2 for primer sequences) using iTaq Universal SYBR 

Green Supermix (Bio-Rad). MeDIP Ct values were normalized against 1% input. 
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Table 2: Primers and Oligonucleotides used in this dissertation. 

Assay Target Sequence (5’ to 3’) Reference 

Cloning mDnmt3L (F) AGGGAATTCCCGGGAGACACCTTCTTC This study 
Cloning mDnmt3L (R) TCAGAATTCTAAAGAGGAAGTGAGTTTTG This study 
Cloning mDnmt3L F297D (F)* CTGGTACATGgaCCAGTTCCACCGGATCCT This study 
Cloning mDnmt3L F297D (R)* GTGGAACTGGtcCATGTACCAGCCGGGAC

A 
This study 

Cloning mDnmt3a1 (F) CCTGAATTCGCCCTCCAGCGGCCCCGG This study 
Cloning mDnmt3a2 (F) TGCGAATTCGAATGCTGTGGAAGAGAAC This study 
Cloning mDnmt3a (R) CACGAATTCAGTTTGCCCCCATGTCCCT This study 
Cloning mDnmt1 ∆1-607 (F) CAAACTAGTCCACCATGGGTGCTACCAA

GGAGAAG 
This study 

Cloning mDnmt1 ∆1-650 (F) ACAACTAGTCCACCATGAAGCGCCGCCG
CTGTG 

This study 

Cloning mDnmt1 ∆1-675 (F) AGGACTAGTCCACCATGGTGAAGTTTGGT
GGCAC 

This study 

Cloning mDnmt1 ∆1-714 (F) ATGACTAGTCCACCATGCCATCACCCAAA
AAGCTG 

This study 

Cloning mDnmt1 (R) CATGCGGCCGCTAGTCCTTGGTAGCAGCC
TCCTC 

This study 

Cloning hPRMT6 (F) GTAGAATTCGTCGCAGCCCAAGAAAAG This study 
Cloning hPRMT6 E155Q (R)^ CCCATCCACTgGCTCACGATGGCATCCAC This study 
Cloning hPRMT6 E155Q (F)^ CATCGTGAGCcAGTGGATGGGCTACGGAC This study 
Cloning hPRMT6 (R) GCTGAATTCAGTCCTCCATGGCAAAGTC This study 
Southern 

Blot 
Major satellite repeat 

probe 
TTAGAAATGTCCACTGTAGGACGTGGAAT

ATGGCAAG 
This study 

Southern 
Blot 

Minor satellite repeat 
probe 

ACTGAAAAACACATTCGTTGGAAACGGG
ATTTGTAGAACAGTGTATATCAATGAGTT

ACAATGAG 

This study 

Southern 
Blot IAP probe GATGTAAGAATAAAGCTTTGCCGCAGAA

GATTCTGGTCTG 
This study 

RT-qPCR mDnmt3a (F) GTTCTACCGCCTCCTGCATGATGC This study 
RT-qPCR mDnmt3a (R) GCCCTGTGTGCAGCAGACACTTC This study 
RT-qPCR mDnmt3a1 (F) GAGGCCTGGCCGGAAGCGCAAGCAC This study 
RT-qPCR mDnmt3a1 (R) GTCTCAGTTCCCTCTCCTTCAGCTG This study 
RT-qPCR mDnmt3a2 (F) GAGGGGCTGCACCTGGCCTTATG This study 
RT-qPCR mDnmt3a2 (R) AGCATCCCCTCCTACTGGCTCAG This study 
RT-qPCR mDnmt3b (F) GGAGGCCCATTAGAGTCCTGTCTC This study 
RT-qPCR mDnmt3b (R) CACCAATCACCAAGTCGAACGGGC This study 
RT-qPCR mGAPDH (F) AAGAGAGGCCCTATCCCAACTC This study 
RT-qPCR mGAPDH (R) TTGTGGGTGCAGCGAACTTTATTG This study 
RT-qPCR mDnmt1 exon 4 (F) TGGGCGGCCGCCATGGCAGACTCAAATA

GATC 
This study 

RT-qPCR mDnmt1 exon 6 (R) GACGGATCCTAGTTCCCCTCTTCCGACTC
TTC 

This study 

RT-qPCR mDnmt1 exon 5 (F) GAGAACCACCAGGCAGAC This study 
RT-qPCR mDnmt1 exon 8 (R) GTTCACATGGCTCTTCCGGACCCAG This study 
RT-qPCR mDnmt1 exon 25 (F) CTGTTCCTGGTGGGCGAGTGC This study 
RT-qPCR mDnmt1 exon 26 (R) GTAAGTCTTGCCATCCTCAG This study 
RT-qPCR mDnmt1 exon 33 (F) CATGGTGCTGAAGCTCACACTGCG This study 
RT-qPCR mDnmt1 exon 34 (R) CAGCCAAGATGATGGCCCTCCTTC This study 
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ChIP-PCR IAP (F) CAAATAATCTGCGCATATGCCGA (151) 
ChIP-PCR IAP (R) GACCAGAATCTTCTGCGGCAA (151) 

ChIP-PCR MSR (F) TGATATACACTGTTCTACAAATCCCGTTT
C 

(152) 

ChIP-PCR MSR (R) ATCAATGAGTTACAATGAGAAACATGGA
AA 

(152) 

Bisulfite 
sequencing 

Human 45S rDNA 
promoter (F) GTGTGTTTTGGGGTTGATTAGAG This study 

Bisulfite 
sequencing 

Human 45S rDNA 
promoter (R) TCCGAAAACCCAACCTCTCCAAC This study 

ChIP-PCR 
& MeDIP-

PCR 

Human HOXA2 
promoter (F) CGGTCCCCATACGGCTGTA 

(69) 

ChIP-PCR 
& MeDIP-

PCR 

Human HOXA2 
promoter (R) CAGGCTGGGAATGGTCTGCT 

(69) 

ChIP-PCR 
& MeDIP-

PCR 

Human CDKN1A 
promoter (F) TGCGTTCACAGGTGTTTCTG 

(142)  

ChIP-PCR 
& MeDIP-

PCR 

Human CDKN1A 
promoter (R) CACATCCCGACTCTCGTCAC 

(142) 

ChIP-PCR 
& MeDIP-

PCR 

Human GREB1C 
promoter (F) TTGTTGTAGCTCTGGGAGCA 

(139) 

ChIP-PCR 
& MeDIP-

PCR 

Human GREB1C 
promoter (R) CAACCAGCCAAGAGGCTAAG 

(139) 

 

F, forward; R, reverse. Continuous underlined sequences indicate EcoRI site, spaced underlined 

sequences indicate SpeI site and double underlined sequence indicate NotI site  used for cloning. 

*Primers used together with mDnmt3L (F) and mDnmt3L (R) to generate mDnmt3L F297D mutation 

(altered nucleotide in lower case). ^Primers used together with hPRMT6 (F) and hPRMT6 (R) to 

generate hPRMT6 E155Q mutation (altered nucleotide in lower case). 
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Immunofluorescence (IF) analysis: Zygotes were fixed in 3.7% paraformaldehyde in PBS for 

30 min at room temperature and permeabilized for 15 min in 0.1% Triton X-100 in PBS at room 

temperature. For 5mC and 5hmC staining, conditions were essentially as previously described (153). 

Images were taken with Olympus IX51 inverted fluorescence microscope at 60X magnification. For 

mESCs IF, cells were cultured on gelatin-coated glass coverslips, fixed with 3.7% paraformaldehyde and 

then permeabilized with 0.1% Triton X-100. After blocking with 1% bovine serum albumin and 10% 

donkey serum (Sigma), cells were incubated with primary antibodies at 4 °C overnight. Finally, cells 

were labeled with Alexa Fluor conjugated secondary antibodies and nuclear stained with DAPI. For 5mC 

IF, the cells were incubated with 2N HCl at room temperature for 40 min and then neutralized with 0.1 

M sodium borate (pH 9.0) for 15 min before the blocking step. Images were taken with Olympus IX51 

inverted fluorescence microscope at 40X magnification. 

 

Isolation of small intestinal crypts: The duodenum section of small intestine from 6-8 weeks old 

mice was removed and flushed with 1X PBS. Intestinal crypts were isolated essentially as previously 

described (154). Briefly, intestine pieces were incubated in constant agitation at 4°C with cold crypt 

chelating buffer (2 mM EDTA in 1X DPBS) and then epithelium was disassociated from basement 

membrane by gently agitation in cold dissociation buffer (54.9 mM D-sorbitol, 43.4 mM sucrose in 1X 

DPBS). Cell suspension was then filtered with 70 µm cell strainer to remove villi. Crypts were purified 

by centrifugation 150 g for 10 min in dissociation buffer and purity was verified under microscope. 

Sufficient amount of intestinal crypts was obtained from one mouse preparation to be divided in three 

separate tubes to extract protein, DNA and RNA.  

 

Immunohistochemistry on tissue sections: Duodenum was initially processed as describe above 

for crypt isolation. Duodenum pieces were formalin fixed and embedded in paraffin and longitudinal 4 

µm sections were prepared. After dewaxing and re-hydration, antigen retrieval was achieved in citrate 

buffer pH 6.0 at 96°C for 20 min. Immunohistochemistry was performed using standard procedures.  
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Western blot and immunoprecipitation: For regular analysis of whole cell extracts by western 

blots, mESCs were lysed in cold RIPA buffer [50 mM Tris-HCl (pH 8.8), 150 mM NaCl, 1% Triton X-

100, 0.5% Sodium Deoxycholate, 0.1% SDS, 1 mM EDTA, 3 mM MgCl2, and 1X protease inhibitor 

cocktail (Thermo Scientific 1861279)]. Immunoprecipitation was performed in lysis buffer [20mM Tris-

HCl (pH 7.9), 150 mM NaCl, 0.1% NP-40, 1 mM EDTA, 3 mM MgCl2, 10% Glycerol, 1X protease 

inhibitor cocktail (Thermo Scientific 1861279)] using Protein A/G UltraLink Resin beads (Thermo 

Fisher 53133). Western blots were performed according to standard procedures. Quantification of 

westerns blots by densitometry was carried out using NIH Image J software (155).  

 

Mass spectrometry proteomic analysis: After Flag immunoprecipitation using M2 beads 

(Sigma), protein samples were eluted from beads using 3X Flag peptide (Sigma) under constant agitation 

for 1 hour at 4°C, and sample volume was concentrated by centrifugation using columns. Then, samples 

were separated by PAGE, gels were Coomasie stained and protein bands were excised from the gel. 

After in-gel trypsin digestion, samples were run on the Dionex LC and Orbitrap Fusion for LC-MS/MS 

with a 30 minute run time. Peptide mapping analysis was performed using Scaffold version 4.8 

(Proteome Software). 

 

Dot blot analyses: RNA-free genomic DNA was denatured in 0.4 N NaOH, 10 mM EDTA at 

95°C for 10 min before spotting various amounts (0.25-1 µg) on nylon membranes using a Bio-Dot 

apparatus (Bio-Rad). The membranes were then incubated with anti-5mC antibody (1:1,000) overnight at 

4°C. Enhanced chemiluminescence signal detection was carried out in the ImageQuant LAS 4000 

imaging system (GE Healthcare Life Sciences) with a CCD camera using chemiluminescence filter and 

automatic exposure settings. To verify equal loading of different DNA samples, membranes were stained 

with SYTOX Green nuclei acid stain (Invitrogen S7020; 1:10,000) for 10 minutes at room temperature. 

Fluorescent green signal was detected using the Cy2 filter and automatic exposure settings. Dot blot 

quantification was carried out by densitometry using the NIH Image J software (155).  
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Reduced Representation Bisulfite Sequencing (RRBS) and Bioinformatics Analyses: 

Experiment: RRBS libraries were made from 1 µg of genomic DNA, according to published protocols 

(156, 157). In brief, the genomic DNA was digested with MspI, end-repaired and A-tailed, and Illumina-

compatible cytosine-methylated adaptors (Bio Scientific) were ligated to the enzyme-digested DNA. 

Size-selected fragments representing sequences from 40 to 170 bp were bisulfite-converted using the EZ 

DNA Methylation-Gold Kit (Zymo Research) and library preparation was done by PCR amplification. 

The libraries were sequenced using 36 bases single-read protocol on Illumina HiSeq 2000 instrument. 

Three biological replicates were prepared for each condition (one Dnmt3L KO sample was discarded in 

the later analysis due to the quality problem).  12-35 million reads were generated per sample. Mapping:  

The adapters were removed from the 3’ ends of the reads by Trim Galore! version 0.4.1 

(https://www.bioinformatics. babraham.ac.uk/projects/trim_galore/) and cutadapt version 1.9.1 (158). 

Then, the reads were mapped to mouse genome mm10 by the bisulfite converted read mapper Bismark 

version 0.16.1 (159) and Bowtie version 1.1.2 (160). 95-96% reads were mapped to the mouse genome, 

with 65-68% uniquely mapped. 8-23 million uniquely mapped reads were used in the final analysis. 

Methylation Calling: The methylation percentages for the CpG sites were calculated by the 

bismark_methylation_extractor script from Bismark and an in-house Perl script. Differential 

Methylation: the differential methylation between conditions was statistically assessed by 

R/Bioconductor package methylKit version 0.9.5 (161) at site resolution and 500 bp tile resolution. Only 

the CpG sites with read coverage ≥ 20 or the tiles that have at least three CpG sites with coverage ≥ 10 in 

all the samples were qualified for the test. The CpG sites or 500 bp tiles with qvalue ≤ 0.01 and 

methylation difference ≥ 25% were called as differentially methylated. Gene Annotation: each site or 

tile was assigned to a location relative to the nearby genes:  upstream (-5k to -1k from TSS), promoter (-

1k to +0.5k from TSS), exon, intron, TES (-0.5k to +1k from TES), downstream (+1k to +5k from TES) 

and intergenic. In the case a site/tile could be assigned to multiple locations relative to different genes, 

one location was chosen following this order: promoter > upstream > TES > downstream > exon > intron 

> intergenic. The genes are the RefSeq genes (162) downloaded from UCSC genome browser 

(http://genome.ucsc.edu/) on July 17, 2015. 
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 MeDIP-seq: The raw reads and the peaks called for shGFP and shDnmt3L were obtained from 

Neri et al. (49), data accessible at NCBI Gene Expression Omnibus (GEO) database, accession 

GSE44642. The reads were mapped to mouse genome mm9 by Bowtie version 1.1.2 (160), with at most 

1 mismatch allowed, and only the reads that were mapped to unique position were retained. To avoid 

PCR bias, for multiple reads that were mapped to the same genomic position, only one copy was retained 

for further analysis. The overlapping or book-ended peaks of shGFP and shDnmt3L were merged, and 

the number of reads in each of the merged peaks was counted for shGFP and shDnmt3L separately. The 

differential methylation between shGFP and shDnmt3L was statistically assessed by binomial test on 

each merged peak, with the hypothesized probability of success determined by the total number of reads 

mapped to the two samples or the number of reads mapped to all the merged peaks in the two samples. 

The pvalues were corrected to false discovery rate (FDR) by Benjamini & Hochberg (BH) method. The 

peaks with FDR≤ 0.05 and fold change ≥ 2 were called as differentially methylated between shGFP and 

shDnmt3L. 

 

Histone acid extraction: Cells were lysed in cold mild lysis buffer containing 10 mM Tris-HCl 

(pH 7.5), 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 1X protease inhibitor cocktail (Thermo 

Scientific 1861279), and 1X phosphatase inhibitor cocktail (Thermo Scientific 78427). Lysates were then 

sonicated in Bioruptor Plus (Diagenode) for 10 cycles (5 sec ON, 30 sec OFF), centrifuged at 14,500 rpm 

in 4°C for 15 minutes, and final pellets were washed once in mild lysis buffer. To extract histones, 

pellets were resuspended in 0.8 N HCl, sonicated for 20 cycles (15 sec ON, 30 sec OFF) and incubated at 

4°C for 1 hour in constant agitation. Soluble histones were clarified by centrifugation at 13,000 rpm in 

4°C for 10 min and neutralized with 2 M Tris-HCl (pH 8.0). 

 

Nuclear fractionation: Nuclear fractionation in mESCs was carried out as described previously 

(163) with the following modification: buffer B was replaced by buffer N [15 mM Tris-HCl (pH 7.5), 

200 mM NaCl, 60 mM KCl, 5 mM MgCl2, 1 mM CaCl2, 0.3% NP-40, and 1X protease inhibitor cocktail 

(Thermo Scientific)]. For experiments in MCF7, NaCl in buffer N was adjusted to 100 mM.  
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Quantification of nuclear fractionation data: Areas from Western blots were measured by 

densitometry using the NIH Image J software (155). UHRF1 areas were normalized against PCNA or 

HP1a areas for soluble or chromatin fractions, respectively. UHRF1 percentages of soluble and 

chromatin fractions from three independent nuclear fractionation experiments were plotted using 

GraphPad Prism 6. 

 

In vitro arginine methylation assay: In vitro arginine methylation reactions were performed in 

30 µl of 1X PBS (pH 7.4) using beads bound to immunoprecipitated Myc-PRMT6 (wild type or E155Q 

mutant) expressed in mESC stable clones as enzyme source, with 1 µg of recombinant histone H3 (New 

England Biolabs) as substrate and 0.42 µM S-adenosyl-l-[methyl-3H] methionine (Perkin Elmer) as 

methyl donor. Reactions were incubated at 30°C for 1 hour, resolved on SDS-PAGE, transferred to 

PVDF membrane, treated with En3Hance (Perkin Elmer) and exposed to film at －80°C for 4 days. 

 

Quantification of 5mC content by liquid chromatography-tandem mass spectrometry (LC-

MS/MS): Quantification of the total levels of 5mC in cancer cells was performed by LC-MS/MS 

essentially as previously described (63). Briefly, 1 µg of RNA-free genomic DNA was denatured at 95°C 

for 5 min and then cooled on ice, followed by addition of 0.1 vol of 0.1 M ammonium acetate (pH 5.3) 

and incubation with 2 units of nuclease P1 (Sigma) for 2 hours at 45°C. Then, 0.1 vol of 1 M ammonium 

bicarbonate and 0.002 units of phosphodiesterase I (Sigma) were added to the mixture and it was further 

incubated for 2 hours at 37°C. Finally, 0.5 units of alkaline phosphatase (Sigma) were added and then 

incubated for 1 additional hour at 37°C. At this point, the solution was ready for immediately analysis by 

LC-MS/MS. The total deoxycytosine (dC) and 5-methyl-deoxycytosine (5mdC) levels were quantified 

with an Agilent 1100 liquid chromatograph coupled to a Waters Quattro Premier mass spectrometer. The 

5mC total level is expressed as a percentage of the total cytosine pool according to peak areas. 
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TCGA Bioinformatic and statistical analysis: PRMT6 expression data and DNA methylation 

data for breast cancer, lung adenocarcinoma and colorectal adenocarcinoma samples in The Cancer 

Genome Atlas (TCGA) database were analyzed. The mean DNA methylation levels of samples with the 

highest (top 20%) and lowest (bottom 20%) PRMT6 expression were compared either without taking 

UHRF1 expression into consideration or by first dividing the samples into UHRF1-high (upper 70%) and 

UHRF1-low (lower 30%) groups. Wilcoxon rank sum non-parametric test with two-tailed P values was 

used to determine the significance of differences. Paired t test with a two-tailed p value was used for dot 

blot data analysis and quantification graphs were generated using GraphPad Prism 6. 
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CHAPTER 3: Regulation of de novo DNA methylation by DNMT3L in mESCs 
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3.1 INTRODUCTION 

 

DNA methylation – the addition of a methyl group to the C-5 position of cytosine, forming 5-

methylcytosine (5mC) – occurs predominantly in the context of CpG dinucleotides. DNA methylation is 

essential for mammalian development and plays crucial roles in various biological processes, including 

regulation of gene expression, maintenance of genomic stability, genomic imprinting, and X 

chromosome inactivation (3, 164). Aberrant DNA methylation patterns and genetic alterations of the 

DNA methylation machinery are associated with numerous human diseases, including developmental 

disorders and cancer (37, 165). 

DNA methylation is catalyzed by two families of DNA methyltransferases (Dnmts). Dnmt1 is 

the major enzyme responsible for maintenance methylation by “copying” the CpG methylation pattern 

from the parental strand onto the daughter strand during DNA replication. Dnmt3a and Dnmt3b function 

primarily as de novo methyltransferases for the establishment of DNA methylation patterns (3). Dnmt3c, 

a Dnmt3b duplicated gene present exclusively in rodents, had been previously annotated as a pseudogene 

(formerly known as Gm14490) but was recently shown to be expressed and play a specific role of de 

novo methylation at retrotransposons during spermatogenesis (9). The Dnmt1 and Dnmt3 enzymes share 

characteristic catalytic motifs in their C-terminal catalytic domains but have different N-terminal 

regulatory regions that largely confer functional specificities of these enzymes. For example, Dnmt3a 

and Dnmt3b contain two chromatin-binding domains in their N-terminal regions that likely play 

important roles in targeting these enzymes to specific genomic regions – the PWWP domain, which is 

required for heterochromatin targeting and mediates binding to trimethylated lysine 36 of histone H3 

(H3K36me3) marks, and the ADD domain, which interacts with the N-terminal tail of histone H3 with 

unmethylated lysine 4 (H3K4me0) (20, 21, 23). 

Dnmt3L (Dnmt3-like), another member of the Dnmt3 family, shows sequence homology with 

the Dnmt3 enzymes but lacks the very N terminus, including the PWWP domain, and some essential 

catalytic motifs in the C-terminal region, including the PC dipeptide at the active site and the sequence 

motif involved in binding of the methyl donor S-adenosyl-L-methioinine. Therefore, Dnmt3L has no 
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enzymatic activity (42, 166). However, Dnmt3L has been shown to interact with Dnmt3a and Dnmt3b 

and significantly stimulates their catalytic activities in vitro (166-168). Crystallography evidence reveals 

that the C-terminal domain of Dnmt3L directly interacts with the C-terminal domain of Dnmt3a to form 

a heterodimer, which further dimerizes through Dnmt3a-Dnmt3a interaction, resulting in the formation 

of a tetramer with two Dnmt3a active sites at the center (43, 169, 170). Biochemical and structural data 

also indicate that Dnmt3L, via its ADD domain, specifically recognizes H3K4me0 and may contribute to 

the specificity of de novo DNA methylation (22). Additionally, the expression pattern of Dnmt3L during 

development strongly correlates with active de novo methylation, with high expression in developing 

germ cells and early embryos, as well as embryonic stem cells (ESCs), and little to no expression in most 

somatic tissues. These findings suggest that Dnmt3L is a key regulator of de novo DNA methylation.  

Genetic evidence supports the role of Dnmt3L as a regulator of de novo methylation. Dnmt3L 

knock-out (KO) mice are viable and grossly normal, indicating that zygotic Dnmt3L is not essential for 

embryonic development (42, 44). However, both male and female Dnmt3L KO mice cannot reproduce. 

Male Dnmt3L KO mice show activation of retrotransposons in spermatogonia and spermatocytes, due to 

failure in de novo methylation, resulting in severe spermatogenesis defects (42, 45). Female Dnmt3L KO 

mice also fail to establish DNA methylation, including maternal genomic imprints, in oocytes. They are 

able to conceive but show maternal-effect lethality – embryos die around mid-gestation – largely due to 

abnormal expression of imprinted genes (42, 44). The phenotype of Dnmt3L KO mice is almost identical 

to that of mice with conditional Dnmt3a deletion in germ cells (35), but different from the embryonic 

lethal phenotype of Dnmt3b KO mice (29).  

Although it is generally assumed that Dnmt3L acts as a catalytic cofactor of Dnmt3a and 

Dnmt3b, the mechanism by which Dnmt3L regulates DNA methylation is not well understood. Also, 

given that Dnmt3L is capable of interacting with and enhancing the activities of both Dnmt3a and 

Dnmt3b, it has been puzzling that Dnmt3L is essential for Dnmt3a-mediated de novo methylation during 

gametogenesis but is dispensable for Dnmt3b-mediated de novo methylation during embryogenesis. 

Moreover, contrary to biochemical and genetic evidence that Dnmt3L functions as a positive regulator of 

DNA methylation, Neri et al. recently showed that Dnmt3L antagonizes DNA methylation in many 
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promoter regions and favors DNA methylation at gene bodies in mouse ESCs (mESCs) (49). To gain 

further insights into the role and specificity of Dnmt3L in DNA methylation, we derived mESC lines 

deficient for maternal Dnmt3L (Dnmt3L mKO), zygotic Dnmt3L (Dnmt3L zKO), or both maternal and 

zygotic Dnmt3L (Dnmt3L mzKO) from blastocyst-stage embryos. We confirmed that Dnmt3L is a 

positive regulator of DNA methylation and found no evidence that it antagonizes DNA methylation in 

mESCs. While Dnmt3L mKO, as expected, mainly affected DNA methylation at imprinting control 

regions (ICRs), Dnmt3L zKO cell lines showed moderate loss of methylation at many genomic regions 

that are normally methylated by Dnmt3a. Interestingly, our results showed that Dnmt3L is critical for 

maintaining the stability of Dnmt3a2, the predominant Dnmt3a protein product in ESCs, and that this 

new role contributes to the effect of Dnmt3L on Dnmt3a-dependent DNA methylation. 

 

3.2 RESULTS 

 

Dnmt3L deficiency in mESCs results in hypomethylation at specific heterochromatin regions. 

Genetic studies in mouse have demonstrated that maternal Dnmt3L is critical for DNA 

methylation in oocytes, including the establishment of genomic imprints, whereas zygotic Dnmt3L is not 

essential for mammalian development (42, 44, 171, 172). To better understand the roles of maternal and 

zygotic Dnmt3L in DNA methylation, we derived mESC lines deficient for maternal Dnmt3L (Dnmt3L 

mKO), zygotic Dnmt3L (Dnmt3L zKO, referred to as Dnmt3L KO for simplicity), or both maternal and 

zygotic Dnmt3L (Dnmt3L mzKO), as well as wild-type (WT, Dnmt3L+/+) mESC lines, from blastocyst-

stage embryos by breeding Dnmt3L-null homozygous (Dnmt3L-/-) or heterozygous (Dnmt3L+/-) females 

with Dnmt3L+/- males (Figure 4A). Because female mESCs become hypomethylated in culture due to 

upregulation of DUSP9, an X-linked MAPK phosphatase (173), we used male mESC lines (determined 

by PCR amplification of Y-linked Sry) for subsequent experiments. The mESC lines were genotyped by 

PCR and verified by Western blot analysis (Figure 4B).  
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Mammalian genomes contain different types of repetitive elements, including interspersed 

transposable elements and tandemly arrayed satellite repeats, that consist of thousands of copies. For 

instance, in the mouse genome, the major satellite (with a 234-bp unit), located at pericentromeric 

heterochromatin, reaches up to 6 Mbp, and the minor satellite (with a 120-bp unit), located at 

centromeric heterochromatin, goes up to 600,000 bp (174, 175). In general, repetitive sequences are 

heavily methylated, and their methylation status can serve as an indicator of global DNA methylation. To 

assess the impact of Dnmt3L deficiency on DNA methylation, we first compared the different mESC 

lines for DNA methylation at the major and minor satellite repeats. Southern blot analysis of genomic 

DNA digested with methylation-sensitive restriction enzymes revealed that Dnmt3L KO and Dnmt3L 

mzKO mESC lines show substantial loss of methylation at the major satellite repeats, but no obvious 

changes in methylation at the minor satellite repeats (Figure 4C-D). Consistent with previous reports that 

maternal Dnmt3L is required for global DNA methylation in oocytes (171, 172), the female pronuclei of 

zygotes derived from Dnmt3L-deficient oocytes were severely hypomethylated (Figure 5). However, 

Dnmt3L mKO mESC lines showed normal levels of DNA methylation at the major satellite repeats 

(Figure 4C), indicating that de novo methylation in Dnmt3L mKO embryos largely restored the 

methylation levels (except special regions such as imprinted loci, see below) during the preimplantation 

stage or during mESC derivation and culture. Taken together, our results show that zygotic Dnmt3L is 

required for methylation at specific genomic regions in mESCs. 
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Figure 4: Dnmt3L deficiency in mESCs results in hypomethylation at specific heterochromatin regions. 

A. Mice matting strategies to generate mESCs with different genotypes. B. Confirmation of Dnmt3L 

expression by western blot in different types of Dnmt3L-deficient mESCs, the numbers indicate the 

clone numbers analyzed in each genotype. C and D. Southern blot analysis using methylation-sensitive 

restriction enzymes on Dnmt3L-deficient mESCs clones using MaeII and major satellite repeat probe (C) 

or HpaII and minor satellite repeat probe (D). DKO, Dnmt3a and Dnmt3b double knock-out mESC 

clone. 
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Figure 5: Zygotes derived from Dnmt3L-deficient female mice show global DNA hypomethylation.    

A. Mice mating strategies to get Dnmt3L mKO and WT zygotes.  PBs, polar bodies. B. 5-methylcytosine 

(5mC) and 5-hydroxymethylcytosine (5hmC) staining of the zygotes. The male and female pronuclei, as 

well as PBs, are indicated. Scale bars, 50 µM. This data was generated by Hongbo Zhao and is used with 

her permission. 
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Dnmt3L is a positive regulator of DNA methylation in mESCs. 

Contrary to biochemical, genetic and genomic evidence that Dnmt3L is a positive regulator of 

DNA methylation (22, 42, 44, 166, 167, 171, 172, 176), Neri et al. recently reported that Dnmt3L 

regulates DNA methylation both positively and negatively, depending on genomic regions (49). To 

further understand the function and specificity of Dnmt3L in DNA methylation, we compared the DNA 

methylation profiles of the different mESC lines (Dnmt3L+/+, Dnmt3L KO, Dnmt3L mKO, and Dnmt3L 

mzKO) by reduced representation bisulfite sequencing (RRBS) analysis (177-179). For each genotype, 

three independent cell lines (biological replicates) were included. For each cell line, we generated ~12-34 

million high quality RRBS reads, of which ~8-23 million were uniquely aligned, containing ~454-679 

thousand CpG sites with >=20-fold coverage. Reads from all cell lines showed near complete (>99%) 

bisulfite conversion of cytosines in non-CpG contexts. In agreement with previous work (178), the 

methylation levels of CpG sites displayed a bimodal distribution in WT mESCs, as well as in the 

Dnmt3L-mutant cell lines, with most sites being either largely unmethylated (<20% methylation) or 

largely methylated (>80% methylation) (Figure 6A-C, Figure 7). 

We compared the Dnmt3L-mutant cell lines with WT mESCs for the methylation levels of CpG 

sites, with the criteria for differentially methylated CpG sites being methylation difference >= 25% and q 

value <= 0.01. While the vast majority (>99%) of CpG sites showed no significant changes in 

methylation in all the Dnmt3L-mutant mESC lines, small factions of CpG sites were obviously 

hypomethylated (Figure 2A-C). The patterns of the hypomethylated sites in Dnmt3L mKO and Dnmt3L 

KO mESCs were different. In Dnmt3L mKO cells, fewer but more severely hypomethylated CpG sites 

(387 sites, ~0.07% of all sites analyzed) were observed, most of which were within the imprinting 

control regions (ICRs) of maternally imprinted genes (as expected, these sites were methylated at ~50% 

in WT cells) (Figure 6A, D). In Dnmt3L KO cells, a larger number of CpG sites were hypomethylated, 

mostly with moderate loss of methylation (4,281 sites, ~0.78% of all sites analyzed), and none of them 

were in ICRs (Figure 6B). Dnmt3L mzKO cells exhibited combined changes of both Dnmt3L mKO and 

Dnmt3L KO cells, with severe loss of methylation in CpG sites in ICRs and moderate hypomethylation 

of many sites in other regions (Figure 6C). Our results indicate that maternal Dnmt3L is essential for the 
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establishment of genomic imprints, consistent with previous studies (42, 44), but does not play a major 

role in the methylation of other regions in mESCs, whereas zygotic Dnmt3L affects the methylation of a 

subset of genomic regions, not including imprinted loci, in mESCs. 

In sharp contrast to the report by Neri et al. that nearly 30% of the differentially methylated 

regions (DMRs) show gain of methylation in shRNA-mediated Dnmt3L knockdown (KD) mESCs (49), 

we observed only negligible numbers of hypermethylated CpG sites in the Dnmt3L-mutant mESC lines 

(Figure 6A-C). Given that Neri et al. showed that Dnmt3L deficiency-induced gain of methylation occurs 

mostly at promoter regions, it is unlikely that the discrepancy was due to the restricted coverage of 

RRBS, as RRBS preferentially captures CG-rich sequences including many CpG islands and promoters. 

Indeed, our RRBS data had good coverage of promoter regions (Figure 8D). We specifically searched 

our RRBS data for the five hypermethylated promoter regions (Rhox5, Hoxa1, Cpne8, Enox1, and Zxda) 

that Neri and colleagues verified by bisulfite sequencing (49) and found that 9 CpG sites in the Enox1 

promoter had sufficient coverage (>=20) in both WT and Dnmt3L KO samples. However, our data 

showed that almost all the sites had lower levels of methylation in Dnmt3L KO cells than in WT cells 

(Figure 9). 
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Figure 6: Dnmt3L is a positive regulator of DNA methylation in mESCs.  

Scatter plots showing distribution of genome-wide DNA methylation by RRBS analysis using site 

resolution in Dnmt3L mKO (A), KO (B) or mzKO (C) compared to WT mESCs. Hypomethylated sites 

are shown in green, hypermethylated sites in blue, while sites located in ICRs in red. Unchanged sites are 

in grey. D. ICRs with common hypomethylated sites for Dnmt3L mKO and mzKO mESCs. E. 

Hypomethylated site overlap between Dnmt3L KO and mzKO mESCs. Panels D and E were prepared 

with data generated by Sally Gaddis and were used with her permission. Scatter plots panels (A-C) were 

generated by Sally Gaddis and were used with her permission. 
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Figure 7. Frequency and percentage of CpG methylation per sample analyzed by RRBS. 

Histograms representing the frequency and levels of CpG methylation in percentage per base from the 

raw data of the three different biological replicates (mESCs clones) of each of the Dnmt3L genotype (i.e. 

Dnmt3L WT, mKO, KO and mzKO) that were analyzed by RRBS. Histograms were generated by Yue 

Lu and were used with her permission. 
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Figure 8: Dnmt3L deficiency mainly affects Dnmt3a-methylated regions. 

Scatter plots showing distribution of genome-wide DNA methylation by RRBS analysis using 500 bp tile 

resolution in Dnmt3L mKO (A), KO (B) or mzKO (C) compared to WT mESCs. Hypomethylated tiles 

are shown in green, hypermethylated tiles in blue, while tiles located in ICRs in red. Unchanged tiles are 

in grey. D. Pie charts showing genomic distribution of hypomethylated tiles for Dnmt3L mKO, KO and 

mzKO mESCs. E. Hypomethylated tile overlap between Dnmt3L KO (blue) and Dnmt3a KO (red) 

mESCs. F. Hypomethylated tile overlap between Dnmt3L KO (blue) and Dnmt3b KO (green) mESCs. 

Panels E and F were prepared with data generated by Sally Gaddis and were used with her permission. 

Scatter plots panels (A-C) pie chart (D) were generated by Sally Gaddis and were used with her 

permission. 
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Figure 9. Differential methylation analysis between Dnmt3L KO and WT mESCs of the sites located  

at the Enox1 promoter using RRBS data.  

CpG-containing sites at the Enox1 promoter were found in the RRBS data from both Dnmt3L KO and 

WT mESCs and their absolute levels of methylation in percentage were plotted. White circles, Dnmt3L 

WT. Black squares, Dnmt3L KO. 
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Neri et al. performed MeDIP-seq analysis to compare genome-wide DNA methylation in 

Dnmt3L KD (shDnmt3L) and control (shGFP) mESCs, with only one sample in each group. By overlap 

analysis, they designated the peaks unique to shGFP as loss-of-methylation regions (14,107 peaks), the 

peaks unique to shDnmt3L as gain-of-methylation regions (5,724 peaks), and the overlapped peaks as 

regions with no change in methylation (41,185 peaks) (49). To determine whether the DMRs are 

statistically significant, we performed differential analysis of the data deposited by Neri and colleagues, 

normalizing either by total number of mapped tags or by foreground tags (i.e. the tags in the peaks). At 

FDR<=0.05 and FC>=2, our analysis confirmed most of the DMRs identified by Neri and colleagues. To 

our surprise, however, almost all the DMRs turned out to be hypermethylated in Dnmt3L KD cells 

(including many of the hypermethylated DMRs identified by Neri et al.), and almost none of the 

hypomethylated DMRs reported by Neri et al. was significant (Figure 10A, B). This outcome is 

essentially the opposite of our results using Dnmt3L KO mESCs (compare Figure 6B and Figure 10A-C) 

and contradicts the results of many previous studies (42, 44-48, 171, 172, 180). The result that nearly all 

DMRs are hypermethylated in Dnmt3L KD cells is also inconsistent with the conclusion of Neri and 

colleagues that hypomethylated and hypermethylated regions account for ~70% and ~30%, respectively 

(49). Flaws in their experimental design and data analysis may have contributed to the erroneous 

conclusion reported by Neri and colleagues. Collectively, our results confirm that Dnmt3L functions as a 

positive regulator of DNA methylation. 
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Figure 10. Volcano plots of the MeDIP-Seq data from Neri et al. and the RRBS data from our work. 

A. Hypothesized probability of the binomial test is determined by the total number of reads mapped to 

the shDnmt3L and shGFP samples by Neri et al. B. Hypothesized probability of the binomial test is 

determined by the number of reads mapped to all the merged peaks in the shDnmt3L and shGFP samples 

by Neri et al. C. Dnmt3L KO vs WT RRBS by sites from our work. D. Dnmt3L KO vs WT RRBS by 

500 bp tiles from our work. Volcano plots were generated by Yue Lu and were used with her permission. 
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Dnmt3L deficiency mainly affects Dnmt3a-methylated regions. 

Our previous work demonstrated that, although Dnmt3a and Dnmt3b redundantly methylate 

many genomic regions in mESCs, they also have preferred and specific DNA targets. For example, 

Dnmt3a is more efficient than Dnmt3b in methylating the major satellite repeats, whereas Dnmt3b 

preferentially methylates the minor satellite repeats (32). Given that Dnmt3L KO mESCs showed overt 

hypomethylation at the major satellite repeats but no changes in methylation at the minor satellite repeats 

(Figure 4C, D), we postulated that zygotic Dnmt3L preferentially regulates the methylation of Dnmt3a 

target regions in mESCs.  

We recently performed genome-wide DNA methylation analysis of Dnmt3a KO mESCs and 

Dnmt3b KO mESCs by whole-genome bisulfite sequencing (WGBS) (manuscript submitted). To test our 

hypothesis that zygotic Dnmt3L mainly regulates Dnmt3a targets (rather than Dnmt3b targets) in 

mESCs, we sought to compare the DNA methylation profile of Dnmt3L KO mESCs with the WGBS 

datasets. For the comparisons, the RRBS data were first converted to 500-bp tiles. Again, Dnmt3L mKO 

cells had only a small number of hypomethylated tiles, with the majority (23/30, ~77%) being in ICRs 

and showing severe loss of methylation, Dnmt3L KO cells had ~10 times more hypomethylated tiles 

(331), mostly with moderate loss of methylation, and Dnmt3L mzKO showed the combined changes, 

whereas none of the cell lines had any hypermethylated tiles (Figure 8A-C). Analysis of the genomic 

distribution of the hypomethylated tiles revealed that, in Dnmt3L mKO cells, nearly half of the them 

were in promoters, consistent with their enrichment in ICRs, and in Dnmt3L KO and Dnmt3L mzKO 

cells, they were mostly located in intergenic regions, gene bodies (introns and exons), and promoters 

(Figure 8D). Overlap analysis showed that the vast majority (268/306, ~88%) of hypomethylated tiles in 

Dnmt3L KO mESCs overlapped with those in Dnmt3a KO mESCs (Figure 8E), whereas a much lower 

fraction (80/308, ~26%) of hypomethylated tiles in Dnmt3L KO cells overlapped with those in Dnmt3b 

KO cells (Figure 8F). These results suggest that Dnmt3L is functionally more important for Dnmt3a than 

for Dnmt3b in mESCs, in agreement with evidence obtained from genetic studies in mice (29, 35, 42, 

44). 
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Dnmt3a2 is unstable in the absence of Dnmt3L.  

Biochemical studies indicate that Dnmt3L interacts with both Dnmt3a and Dnmt3b and 

stimulates their catalytic activities (166, 167, 176, 181). Why Dnmt3L preferentially regulates Dnmt3a-

mediated DNA methylation in vivo is an open question. To gain insights into the mechanism underlying 

the functional specificity of Dnmt3L, we first analyzed the expression of the Dnmt proteins in Dnmt3L-

deficient mESCs by western blot. As compared to WT mESCs, Dnmt3L KO and mzKO mESCs, but not 

Dnmt3L mKO mESCs, showed marked decreases in Dnmt3a2 and minor decreases in Dnmt3a1 and 

Dnmt3b, whereas Dnmt1 was expressed at comparable levels in all the cell lines (Figure 11A). As 

Dnmt3a2 is the predominant Dnmt3a isoform in mESCs (25), our data raised the possibility that 

downregulation of Dnmt3a2 could contribute to the preferential effect on Dnmt3a targets observed in 

Dnmt3L KO mESCs.  

Transcription of the two Dnmt3a isoforms in mESCs - Dnmt3a1 (minor isoform) and Dnmt3a2 

(major isoform) - was driven by different promoters (25). RT-qPCR analysis using specific primers 

revealed that Dnmt3a1, Dnmt3a2 and total Dnmt3a, as well as Dnmt3b, mRNA levels were not altered in 

Dnmt3L KO mESC lines (Figure 11B). These data suggest that post-transcriptional dysregulation led to 

the decrease in Dnmt3a2 protein level in Dnmt3L KO mESCs. 

Next, we examined whether Dnmt3a2 protein stability is affected in the absence of Dnmt3L. To 

this end, we treated Dnmt3L KO and WT mESCs with the protein synthesis inhibitor cycloheximide 

(CHX) and then monitored the rates of Dnmt3a2 decline over time. p53, a rapidly turning-over protein, 

was used as a control for the efficacy of CHX treatment, and b-actin, a highly stable protein, was used as 

a loading control.  In the absence of Dnmt3L, Dnmt3a2 declined substantially more rapidly (Figure 11C). 

By measuring the intensities of the Dnmt3a2 bands, we estimated that the half-life of Dnmt3a2 protein 

was reduced to ~6 hours in Dnmt3L KO mESCs, as opposed to more than 12 hours in WT mESCs 

(Figure 11D).  
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Figure 11: Dnmt3a protein is unstable in the absence of Dnmt3L. 

A. Western blot using different types Dnmt3L deficient mESCs, two clones per genotype. B. Upper 

panel, diagram indicating the Dnmt3a locus (black) and the exons (white) of different Dnmt3a isoforms 

indicating the position of the primers used for the analysis of mRNA levels by RT-qPCR. C. Analysis of 

protein stability by treatment with cycloheximide (CHX) for different periods. D. Quantification of the 

band intensity showed in C. E and F. Western blot results of inhibition of proteosomal (E) or lysosomal 

(F) protein degradation pathways after treatment with MG132 or Baf-A1, respectively.   
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Two major pathways - the ubiquitin-proteasome pathway and lysosomal proteolysis - mediate 

protein degradation in eukaryotic cells. We therefore investigated whether these pathways were involved 

in Dnmt3a2 degradation in the absence of Dnmt3L. We treated Dnmt3L KO and WT mESCs with the 

proteasome inhibitor MG132 or the lysosome inhibitor Bafilomycin A1 (Baf-A1) for different periods of 

time and then examined Dnmt3a2 levels by western blot analysis. Although the inhibitors were highly 

effective, as evidenced by the dramatic accumulation of p53 and LC3B-II, respectively, they failed to 

recover Dnmt3a2 levels in Dnmt3L KO mESCs (Figure 11E, F), suggesting that a different mechanism 

was responsible for Dnmt3a2 degradation in these cells. Collectively, these results suggest that Dnmt3L 

is required for Dnmt3a2 protein stability in mESCs. 

 

The ability of Dnmt3L to interact with Dnmt3a is critical for Dnmt3a stability.  

Biochemical and structural studies have shown that Dnmt3L and Dnmt3a directly interact via 

their C-terminal regions (43, 170). We therefore hypothesized that formation of the Dnmt3L-Dnmt3a2 

complex could lead to Dnmt3a2 stabilization. To test the hypothesis, we first sought to engineer a 

Dnmt3L point mutation that abolishes Dnmt3L-Dnmt3a interaction by substituting phenylalanine 297 of 

mouse Dnmt3L with aspartate (F297D). F297 (equivalent to F261 in human DNMT3L) is a critical 

residue involved in interacting with Dnmt3a, and replacing this hydrophobic amino acid with the 

negatively charged aspartate has been shown to abolish the ability of Dnmt3L to stimulate Dnmt3a 

catalytic activity (43, 170). By co-immunoprecipitation (co-IP) experiments using Myc-tagged Dnmt3L 

proteins transiently expressed in mESCs, we confirmed that WT Dnmt3L interacted with endogenous 

Dnmt3a2 and that the F297D mutation disrupted the interaction (Figure 12A). We then performed rescue 

experiments to compare the effects of WT Dnmt3L and the F297D mutant in restoring Dnmt3a2 levels in 

Dnmt3L KO mESCs. To this end, Myc-tagged Dnmt3L or the F297D mutant was transfected in Dnmt3L 

KO mESCs, and individual stable clones were obtained after 7-10 days of selection with blasticidin. 

Notably, expression of WT Dnmt3L, but not the F297D mutant, resulted in obvious restoration of 

Dnmt3a2 levels, as compared to stable clones transfected with the empty vector (Figure 12B). The 

different effects could not be attributed to differences in expression levels of the Myc-tagged proteins, as 
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both WT Dnmt3L and the F297D mutant were expressed at similar levels in the clones used in the 

experiment (Figure 12B). To verify that formation of the Dnmt3L-Dnmt3a2 complex stabilized 

Dnmt3a2, we again assessed Dnmt3a2 protein stability, as described above (Figure 11C-D), in the stable 

clones reconstituted with Myc-tagged Dnmt3L proteins. Indeed, Dnmt3a2 stability almost completely 

recovered in cells expressing WT Dnmt3L (half-life: ~12 hours), and the effect was not observed in cells 

expressing the F297D mutant (Figure 12C-D). Southern blot analysis also confirmed that the DNA 

methylation level at the major satellite repeats was rescued to a large extent in Dnmt3L KO mESCs 

reconstituted with WT Dnmt3L, whereas expression of the F297D mutant protein had no effect (Figure 

12E). Taken together, these results support our hypothesis that Dnmt3L, by interacting with Dnmt3a2 to 

form a complex, makes Dnmt3a2 stable. 
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Figure 12: The ability of Dnmt3L to interact with Dnmt3a is critical for Dnmt3a stability. 

A. Western blot results of the co-immunoprecipitation experiment of Myc-Dnmt3L WT or F297D 

mutant with endogenous Dnmt3a2. B. Western blot showing Dnmt3L KO stable rescue clones 

overexpressing Myc-Dnmt3L WT, Myc-Dnmt3L F297D mutant or empty vector, result of three 

representative clones per group. C. Analysis of protein stability in Dnmt3L KO stable rescue clones 

overexpressing Myc-Dnmt3L WT or F297D mutant, by treatment with cycloheximide (CHX) for 

different periods. D. Quantification of the band intensity showed in C. E. Southern blot results of major 

satellite repeat with Dnmt3L KO stable rescue clones overexpressing Myc-Dnmt3L WT, Myc-Dnmt3L 

F297D mutant or empty vector. 
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Forced expression of Dnmt3a in Dnmt3L KO mESCs rescues DNA methylation. 

Our data indicated that Dnmt3L plays a crucial role in maintaining Dnmt3a2 protein stability, in 

addition to its role in stimulating Dnmt3a catalytic activity (166, 167, 176). The relative contributions of 

these two regulatory effects of Dnmt3L in Dnmt3a-mediated DNA methylation are unclear. To 

determine the functional importance of the regulation of Dnmt3a2 stability, we asked whether restoring 

the Dnmt3a level in the absence of Dnmt3L would be sufficient to rescue DNA methylation. We 

generated stable clones in Dnmt3L KO mESCs expressing Myc-tagged Dnmt3a1 or Dnmt3a2. We were 

able to obtain Dnmt3a2 clones with expression levels similar to endogenous Dnmt3a2 level in WT 

mESCs, although the expression levels in the Dnmt3a1 clones were lower (Figure 13A). Southern blot 

analysis revealed that forced expression of either Dnmt3a1 or Dnmt3a2 substantially restored the 

methylation levels at the major satellite repeats, although the rescue efficiency appeared to be slightly 

lower than that of the WT Dnmt3L clone used in the experiment (Figure 13B). Thus, we conclude that 

regulating Dnmt3a (especially Dnmt3a2) protein stability is an important aspect of Dnmt3L function that 

significantly contributes to Dnmt3a-dependent DNA methylation in mESCs (Figure 13C). 
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Figure 13: Forced expression of Dnmt3a in Dnmt3L KO mESCs rescues DNA methylation. 

A. Western blot results showing Dnmt3L KO stable rescue clones overexpressing Myc-Dnmt3a1 or 

Myc-Dnmt3a2. B. Southern blot results of major satellite repeat with Dnmt3L KO stable clones 

overexpressing Myc-Dnmt3L WT, Myc-Dnmt3L F297D mutant, Myc-Dnmt3a1 or Myc-Dnmt3a2. C. 

Model of the roles of Dnmt3L in the regulation of Dnmt3a activity in mESCs. 
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3.3 DISCUSSION 

 

Dnmt3L is a key regulator of de novo DNA methylation. Based on its ability to stimulate the 

enzymatic activities of Dnmt3a and Dnmt3b in vitro (166, 167, 176), it is generally assumed that 

Dnmt3L functions primarily as a catalytic cofactor of these enzymes. In the present study, we 

demonstrate that, in mESCs, Dnmt3L also regulates the abundance of these de novo methyltransferases, 

especially Dnmt3a2, the predominant Dnmt3a protein product in mESCs (25). Our results indicate that 

Dnmt3L, via interacting with Dnmt3a2 to form a complex, stabilizes Dnmt3a2. Dnmt3L-deficient 

mESCs show hypomethylation at genomic regions that are mainly Dnmt3a targets, including the major 

satellite repeats. Restoring Dnmt3a amount (by forced expression of either Dnmt3a1 or Dnmt3a2) in 

Dnmt3L-deficient mESCs largely rescues DNA methylation levels at the major satellite repeats. These 

results suggest that Dnmt3L is not absolutely required for Dnmt3a-mediated methylation, at least at some 

genomic regions, although it seems to enhance the methylation efficiency. Therefore, we conclude that 

the regulatory roles of Dnmt3L on Dnmt3a activity and stability both contribute to Dnmt3a-dependent 

DNA methylation and functions (Figure 13C).   

During the mammalian life cycle, two waves of de novo DNA methylation take place – the first 

occurring shortly after implantation, which establishes the initial methylation pattern in the embryo, and 

the second occurring during germ cell maturation, which establishes germ line-specific methylation 

marks, including genomic imprints (3, 164). Genetic studies and genome-wide DNA methylation 

analysis suggest that Dnmt3b plays a major role in de novo methylation during embryogenesis (first 

wave) and Dnmt3a is largely responsible for de novo methylation in germ cells (second wave) (29, 35, 

171, 172, 182). Dnmt3L is essential for Dnmt3a-mediated methylation in germ cells but appears to be 

dispensable for Dnmt3b-mediated methylation and functions during embryonic development (42, 44, 45, 

171, 172). Our finding that Dnmt3L preferentially stabilizes Dnmt3a2 in mESCs provides a plausible 

explanation for the functional specificity of Dnmt3L in vivo. Indeed, Dnmt3a2 and Dnmt3L are highly 

expressed in prospermatogonia and growing oocytes (183, 184), the stages when active de novo DNA 
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methylation occurs during gametogenesis. Further work is required to confirm the role of Dnmt3L in 

maintaining Dnmt3a2 stability and the significance of this role in DNA methylation in the germ line. 

It remains to be determined why Dnmt3L deficiency has a severe effect on Dnmt3a2 stability, 

but only minor effects on Dnmt3a1 and Dnmt3b levels. While recombinant or exogenously expressed 

Dnmt3a, Dnmt3b and Dnmt3L proteins are capable of interacting with each other (38, 166-168), there is 

evidence that endogenous Dnmt3L physically interacts with Dnmt3a2, but not Dnmt3a1 and Dnmt3b, in 

mESCs (48). This provides a possible explanation for the preferential effect of Dnmt3L on Dnmt3a2 

stability. The full-length Dnmt3a1 and Dnmt3b proteins have high sequence homology except a variable 

region at their N termini, and this region is absent in the shorter Dnmt3a2 isoform (25). However, this 

variable region is unlikely to be directly involved in interacting with Dnmt3L, as structural evidence 

indicates that the Dnmt3L-Dnmt3a2 interaction is mediated by their C-terminal regions (43). One 

possibility for why endogenous Dnmt3a1 and Dnmt3b fail to form complexes with Dnmt3L in mESCs is 

that they are less accessible to Dnmt3L. Dnmt3a1 and Dnmt3b are tightly associated with chromatin with 

significant enrichment in heterochromatin, whereas Dnmt3a2 seems to be more loosely bound to 

chromatin (25). That Dnmt3a2 is relatively more soluble and more widely distributed perhaps makes it 

more susceptible to degradation in the absence of Dnmt3L. Alternatively, the extra sequences in the full-

length Dnmt3a1 and Dnmt3b proteins may protect them from being degraded by blocking the 

degradation machinery. While the mechanism by which Dnmt3a2 is degraded remains to be elucidated, 

our data suggest that it is independent of the ubiquitin-proteasome and lysosomal proteolysis pathways. 

Another factor that needs to be considered is that, in mESCs, Dnmt3a2 is far more abundant than 

Dnmt3a1 (25), which may make Dnmt3a2 more sensitive to the effects of Dnmt3L deficiency. Dnmt3b 

is also abundantly expressed in mESCs. However, Dnmt3b produces multiple alternatively spliced 

isoforms, some of which have no catalytic activity but may play regulatory roles in Dnmt3b-mediated 

methylation (185), similar to the effects of Dnmt3L on Dnmt3a. 

In agreement with previous studies regarding the role of Dnmt3L in DNA methylation in germ 

cells, embryos and mESCs (42, 44-48, 171, 172, 180), our work shows that Dnmt3L is a positive 

regulator of DNA methylation. This is in sharp contrast to a recent report by Neri et al., which concluded 
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that, in mESCs, Dnmt3L regulates DNA methylation positively or negatively, depending on genomic 

regions (49). However, their conclusion was not supported by convincing data, as re-analysis of the 

MeDIP-seq data deposited by Neri and colleagues revealed that, surprisingly, shRNA-mediated Dnmt3L 

depletion led to gain of methylation at many genomic regions, but almost no region with significant loss 

of methylation, which would suggest that Dnmt3L functions predominantly as a negative regulator of 

DNA methylation. Several factors may have contributed to the different conclusion drawn by Neri and 

colleagues, including the limitations of MeDIP, lack of biological replicates, and flaws in data analysis. 

Based on the outcome of our analysis of their data, as well as the way some of their data were presented 

(e.g. Figure 4E in Neri et al.), we also cannot rule out the possibility that their samples or datasets were 

switched. 

In summary, we demonstrate in the present study that Dnmt3L plays a key role in stabilizing 

Dnmt3a2 protein, in addition to its functions in the regulation of Dnmt3a catalytic activity and chromatin 

targeting, and this new role likely contributes, to a large extent, to the functional specificity of Dnmt3L 

in vivo (i.e. mainly affecting Dnmt3a-dependent methylation and functions). 
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CHAPTER 4: Regulation of maintenance DNA methylation by PRMT6 in cancer 

 

 

This chapter is based upon: Veland, N., Hardikar, S., Zhong, Y., Gayatri, S., Dan, J., Strahl, B.D., 

Rothbart, S.B., Bedford, M.T. and Chen, T. (2017) The Arginine Methyltransferase PRMT6 Regulates 

DNA Methylation and Contributes to Global DNA Hypomethylation in Cancer. Cell Rep, 21, 3390-

3397. 

 

 

Used with permission of Elsevier. 
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4.1 INTRODUCTION 

 

In mammals, DNA methylation (5-methylcytosine, 5mC) is mostly restricted to CpG 

dinucleotides and plays crucial roles in many biological processes. Aberrant DNA methylation patterns 

are associated with cancer. Specifically, cancer cells generally exhibit global hypomethylation and loci-

specific hypermethylation, which are implicated in genomic instability and tumor suppressor silencing, 

respectively (4). However, the mechanisms underlying these alterations remain largely unclear. 

DNA methylation patterns are established by the de novo DNA methyltransferases DNMT3A 

and DNMT3B and maintained primarily by the maintenance DNA methyltransferase DNMT1. DNMT1 

recruitment to hemi-methylated CpG sites during DNA replication depends on UHRF1, a multi-domain 

protein (50, 51). The SRA (SET- and RING-associated) domain of UHRF1 preferentially binds hemi-

methylated DNA and plays an important role in loading DNMT1 onto newly synthesized DNA (50, 51, 

186). The RING domain-mediated ubiquitination of lysine residues in the N-terminal tail of histone H3 

promotes DNMT1 association with H3 (67, 187, 188). Moreover, the TTD (tandem Tudor domain) and 

PHD (plant homeodomain) cooperatively interact with the N-terminal tail of H3 by recognizing a 

specific histone modification signature. Specifically, the TTD exhibits affinity for di- and tri-methylated 

lysine 9 (H3K9me2/me3) (66, 186, 189), whereas PHD-mediated binding to H3 is disrupted by arginine 

2 (H3R2) methylation (65, 190-192). Recent studies show that the SRA domain interaction with DNA 

stimulates TTD-PHD-mediated H3 binding and that hemi-methylated DNA recognition allosterically 

activates RING domain-mediated H3 ubiquitination (188, 193). These data suggest that UHRF1 targets 

DNMT1 to newly replicated DNA through complex interactions with chromatin.  

The observation that the UHRF1 PHD specifically binds unmodified, but not H3R2-methylated, 

N-terminal tail of H3 suggests that DNA methylation may be modulated by H3R2 methylation. Arginine 

methylation is carried out by the PRMT family, consisting of nine members (116). PRMT6 is the 

primary enzyme responsible for asymmetric dimethylation of H3R2 (H3R2me2a) (68-70). Notably, 

PRMT6 is frequently overexpressed in cancer cells and implicated in tumorigenic functions (113). In this 
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study, we show that PRMT6 negatively regulates DNA methylation by impairing UHRF1 association 

with chromatin and that its overexpression contributes to global DNA hypomethylation in cancer. 

 

4.2  RESULTS 

 

PRMT6 overexpression induces global DNA hypomethylation in mESCs 

Given that H3R2 methylation disrupts UHRF1-H3 interaction (65, 190-192), we hypothesized 

that PRMT6, the primary enzyme responsible for H3R2me2a, regulates DNA methylation. To test the 

hypothesis, we generated mouse embryonic stem cell (mESC) clones overexpressing human PRMT6 by 

stable transfection of a bicistronic vector expressing Myc-tagged PRMT6 and the blasticidin-resistant 

gene (Figure 14A). mESCs offer an ideal experimental system for studying DNA methylation regulators, 

as their survival and proliferation are not affected by DNA methylation loss (194). Western blots 

detected increases in H3R2me2a that correlated with PRMT6 levels in the stable clones. Consistent with 

previous reports that H3R2 methylation antagonizes H3K4me3 (68, 69, 135), H3K4me3 levels decreased 

in clones expressing high levels of PRMT6. As controls, H3K9me3 and total H3 showed no alterations 

(Figure 14B). Apparently, PRMT6 overexpression also led to increases in arginine methylation of non-

histone proteins (Figure 15A). The stable clones maintained the mESC state, as judged by colony 

morphology, growth rates, and expression of the pluripotency factors Nanog, Sox2 and Oct4 (Figures 

15B-D).  

To assess the impact of PRMT6 overexpression on DNA methylation, we first analyzed the 

minor satellite repeats (MSR) and intracisternal A-particle (IAP) retrotransposons. Southern blot analysis 

of genomic DNA digested with the methylation-sensitive restriction enzyme HpaII revealed that cells 

expressing Myc-PRMT6 exhibited drastic DNA hypomethylation compared to cells transfected with the 

empty vector (mock) (Figures 14C and 14D). We then confirmed global DNA hypomethylation in 

PRMT6-overexpressing mESCs with dot blot and immunofluorescence (IF) analyses using a 5mC 

antibody (Figures 14E-14G). The effect of PRMT6 on DNA methylation depends on its catalytic 
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activity, as an inactive PRMT6 mutant (E155Q) failed to induce DNA hypomethylation in mESCs 

(Figures 16A-C). Together, these results demonstrate that PRMT6 and its methyltransferase activity 

negatively regulates global DNA methylation, likely by inducing H3R2me2a. 

 

PRMT6 overexpression impairs Uhrf1 association with chromatin 

To determine the mechanism by which PRMT6 induces DNA hypomethylation, we first 

examined the expression of Dnmts, as well as key regulators of DNA methylation, including Uhrf1 

(murine Uhrf1 is also known as Np95), PCNA and Usp7. Western blots showed no changes in the levels 

of these proteins in PRMT6-overexpressing cells (Figure 17A). We then investigated the possibility of 

increased H3R2me2a affecting Uhrf1 binding to chromatin. Nuclear fractionation experiments revealed 

that Uhrf1 chromatin association reduced dramatically in PRMT6-overexpressing mESCs compared to 

mock mESCs (~10% vs. ~60%) (Figures 17B and 17C). Chromatin immunoprecipitation (ChIP) analysis 

confirmed that increased H3R2me2a levels correlated with decreased Uhrf1 enrichment at MSR and IAP 

regions in PRMT6-overexpressing mESCs (Figures 17D and 17E). These results support our hypothesis 

that higher H3R2me2a levels induced by PRMT6 overexpression impair Uhrf1 association with 

chromatin, resulting in a failure in maintaining DNA methylation.  
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Figure 14. Overexpression of PRMT6 in mESCs induces global DNA hypomethylation.  

A. Diagram of Myc-PRMT6 plasmid. B. Western blots showing the levels of Myc-PRMT6 and histone 

marks in stable mESC clones. Mock, mESCs transfected with empty vector. Dnmt1-/-, Dnmt1 KO 

mESCs. C and D. Southern blots showing DNA methylation at MSR (C) and IAP (D) after digestion of 

genomic DNA with methylation-sensitive restriction enzyme HpaII. Uhrf1-/-, Uhrf1 KO mESCs. E. Dot 

blot analysis of genomic DNA with 5mC antibody (left). The same membrane was stained with SYTOX 

Green to verify equal DNA loading (right). F. Quantification of data in (E) by densitometry using Image 

J. Shown are relative 5mC levels (mean + SD from three independent experiments). Paired t test was 

used to determine statistical significance. **P < 0.01. G. IF analysis with 5mC antibody.  
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Figure 15. PRMT6 overexpression results in increases in arginine methylation of some non-histone 

proteins and shows no effect on mESC state. 

A. Western blots using a pan-Rme2a antibody showing increases in arginine asymmetric dimethylation 

of some proteins in mESCs overexpressing Myc-PRMT6. B. Representative images of mock-transfected 

and Myc-PRMT6-overexpressing mESCs showing similar colony morphology. Scale bars, 50µm. C. 

Western blots showing no changes in the expression of pluripotency factors Nanog, Sox2 and Oct4 in 

Myc-PRMT6-overexpressing mESCs. D. IF analysis of co-cultured mock-transfected and Myc-PRMT6 

overexpressing (indicated by arrows) mESCs, which confirms no changes in Nanog, Sox2 and Oct4 

expression in PRMT6-overexpressing cells. Scale bars, 10µm. 
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Figure 16. The catalytic activity of PRMT6 is required for its effect on DNA methylation.  

A. In vitro methylation assay using PRMT6 proteins immunoprecipitated from mESC stable clones 

expressing Myc-tagged WT PRMT6 or mutant PRMT6 (E155Q), which demonstrates that the E155Q 

mutant is catalytically inactive. B and C. Southern blot analysis of IAP retrotransposons (B) or MSR 

(minor satellite repeats) (C) after digestion of genomic DNA with the DNA methylation-sensitive 

restriction enzyme HpaII, which shows hypomethylation in mESC clones overexpressing WT PRMT6, 

but not the inactive E155Q mutant. 
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Figure 17. Uhrf1 chromatin association is impaired in mESCs overexpressing PRMT6.  

A. Western blots showing the levels of DNA methylation enzymes and regulators. Note that mESCs 

express two major Dnmt3a isoforms (Dnmt3a and Dnmt3a2) and that the Dnmt3a antibody cross-reacts 

with Dnmt3b. B. Nuclear fractionation assay showing Uhrf1 chromatin association. PCNA and HP1α 

were used as controls for soluble and chromatin-associated proteins, respectively. Total, nuclei directly 

dissolved in 2xSDS loading buffer. C. Quantification of data in (B) by densitometry using Image J. 

Shown are percentages of soluble and chromatin-associated Uhrf1 in each sample (mean + SD from 

three independent experiments). D and E. ChIP assays showing relative enrichment of H3R2me2a (D) 

and Uhrf1 (E) at MSR and IAP regions (mean + SD from three independent experiments). 
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PRMT6 upregulation correlates with DNA hypomethylation in human cancers 

Global DNA hypomethylation is a hallmark of cancer cells (4), but the underlying mechanisms 

are poorly understood. Given that overexpression of PRMT6 is reported in multiple types of cancer 

(113), we postulated that PRMT6 upregulation might contribute to global DNA hypomethylation in 

cancer. 

We first assessed the correlation between PRMT6 expression and DNA methylation in a panel of 

cancer cell lines. Western blots indicated that, compared to non-tumorigenic breast cell lines 76NF2V 

and MCF 10F, most cancer cell lines examined exhibited upregulation of PRMT6, although the levels 

varied greatly (Figure 18A). The 5mC content in the cancer cell lines was measured by liquid 

chromatography and tandem mass spectrometry (LC-MS/MS) (Table 3). Based on the relative levels of 

PRMT6 (Figure 18A), we divided the cancer cell lines into two groups: the PRMT6-high group had 

significantly lower levels of 5mC than the PRMT6-low group  (Figure 18B). 

We next asked whether PRMT6 upregulation correlates with DNA hypomethylation in primary 

tumor samples by employing The Cancer Genome Atlas (TCGA) database. Data downloaded from the 

cBioPortal for Cancer Genomics showed wide variations in PRMT6 expression in all cancer types 

(Figure 19A). We selected three common cancer types, i.e. breast cancer, lung cancer and colorectal 

cancer, because a large amount of DNA methylation data is available in the TCGA database. When all 

samples of each cancer type were included in the analyses, no clear correlation was observed between 

PRMT6 expression and DNA methylation levels, which is not surprising because both PRMT6 and DNA 

methylation levels are highly variable in different samples. However, comparisons of the samples with 

the highest 20% and lowest 20% of PRMT6 expression revealed a significant inverse correlation 

between PRMT6 expression and DNA methylation in lung cancer and colorectal cancer, but not in breast 

cancer (Figure 18C). Based on our hypothesis, DNA methylation may not be affected by PRMT6 if 

UHRF1 expression is low. Therefore, we first divided the samples into UHRF1-high (upper 70%) and 

UHRF1-low (lower 30%) groups and then compared DNA methylation levels in samples with high (top 

20%) and low (bottom 20%) PRMT6 expression. Consistent with our hypothesis, we observed a 

significant inverse correlation between PRMT6 expression and DNA methylation in the UHRF1-high 
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groups of all three cancer types (Figure 18D upper panel) and no correlations in the UHRF1-low groups 

(Figure 18D lower panel). Together, these data suggest that PRMT6 upregulation contributes to global 

DNA hypomethylation in cancer. 

 

PRMT6 depletion or inhibition restores global DNA methylation in MCF7 cells 

To validate the significance of PRMT6 upregulation in DNA hypomethylation, we assessed the 

impact of PRMT6 knockdown (KD) and inhibition in MCF7 cells, a breast cancer cell line with high 

PRMT6 expression (Figure 18A). Stable expression of PRMT6 shRNAs, which efficiently depleted 

PRMT6 (Figure 20A), or treatment with MS023, a PRMT inhibitor that is potent for PRMT6 (147), 

resulted in substantial decreases in H3R2me2a, but no changes in DNMT1 and UHRF1 levels (Figures 

20A and 20C). Consistent with previous reports (140-142, 145, 147), PRMT6 KD or MS023 treatment 

resulted in defects in MCF7 proliferation (Figures 21A-D). Dot blot analysis showed that PRMT6 

depletion or inhibition led to increases in global DNA methylation (Figures 20B and 20D). We verified 

the results by bisulfite sequencing analysis of a region in the 45S ribosomal DNA (rDNA) promoter, 

which is partially methylated in MCF7 cells (195). Indeed, PRMT6 KD or MS023-treated cells had 

markedly higher levels of DNA methylation (~90%) than control cells (~60%) (Figure 20E). Both de 

novo and maintenance methylation probably contributed to the restoration of DNA methylation levels. 

In agreement with our hypothesis, UHRF1 chromatin association was substantially enhanced in 

cells treated with MS023 (as opposed to ~50% chromatin association in cells treated with DMSO) 

(Figures 20F and 20G). To strengthen the hypothesis, we analyzed the UHRF1 occupancy at the 

promoter regions of three PRMT6 target genes, HOXA2, CDKN1A and GREB1C (69, 139, 140, 142). 

ChIP and methylated-DNA immunoprecipitation (MeDIP) analyses confirmed that H3R2me2a reduction 

induced by MS023 correlated with increases in UHRF1 enrichment and DNA methylation levels at these 

loci (Figures 20H-20J). Collectively, these results suggest that, in MCF7 cells, increased H3R2me2a due 

to PRMT6 upregulation plays a critical role in inducing global DNA hypomethylation by impairing 

UHRF1 chromatin binding. 
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Figure 18. PRMT6 expression inversely correlates with DNA methylation in human cancer cells.  

A. Western blots showing PRMT6 levels in human cancer cell lines. BR NT, breast non-tumorigenic; 

BRCA, breast cancer; PCA, prostate cancer; COAD, colorectal adenocarcinoma; LUAD, lung 

adenocarcinoma; NB, neuroblastoma; OS, osteosarcoma. B. Comparison between PRMT6-high and 

PRMT6-low cell lines for total 5mC levels (determined by LC-MS/MS, see Table 3). C and D. 

Correlation of PRMT6 expression and DNA methylation data from the TCGA database. The mean DNA 

methylation levels between cancer samples with the highest (top 20%) and lowest (bottom 20%) PRMT6 

expression in each cancer type were compared, either without considering UHRF1 expression (C) or by 

dividing all samples into UHRF1-high (upper 70%) and UHRF1-low (lower 30%) groups before analysis 

(D). Note that the 30% cutoff for UHRF1 expression was based on samples of all three cancer types 

combined and, therefore, the sample sizes of UHRF1-high and UHRF1-low groups in each cancer type 

do not account for precisely 70% and 30%. Wilcoxon rank sum non-parametric test with two-tailed P 

values was used to determine the significance of differences in (B-D). See also Table 3 and Figure 19. 
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Table 3: 5mC content in human cancer cell lines. 

Cell line Experiment 1 Experiment 2 Mean Mean ± SD 

 5mdC/(dC+5mdC) (%) 

MDA-MB 231 0.0488 0.0524 0.0506 5.06 ± 0.26 

MDA-MB 361 0.0668 0.0721 0.0695 6.95 ± 0.37 

MDA-MB 436 0.0721 0.0744 0.0733 7.33 ± 0.16 

MDA-MB 468 0.0659 0.0686 0.0672 6.72 ± 0.19 

HCC-1569 0.0608 0.0663 0.0636 6.36 ± 0.39 

HCC-1599 0.0590 0.0593 0.0592 5.92 ± 0.02 

HCC-1806 0.0506 0.0539 0.0523 5.23 ± 0.23 

HCC-1937 0.0690 0.0753 0.0722 7.22 ± 0.45 

MCF7 0.0548 0.0559 0.0553 5.53 ± 0.07 

SKBR3 0.0494 0.0510 0.0502 5.02 ± 0.11 

BT-474 0.0730 0.0774 0.0752 7.52 ± 0.31 

DU-145 0.0728 0.0775 0.0751 7.51 ± 0.34 

LnCaP 0.0403 0.0414 0.0409 4.09 ± 0.08 

PC-3 0.0631 0.0659 0.0645 6.45 ± 0.19 

HCT-116 0.0736 0.0785 0.0760 7.60 ± 0.34 

RKO 0.0657 0.0675 0.0666 6.66 ± 0.13 

H82 0.0636 0.0638 0.0637 6.37± 0.02 

H526 0.0575 0.0589 0.0582 5.82 ± 0.10 

VMRC-LCD 0.0583 0.0587 0.0585 5.85 ± 0.03 

SH-SY5Y 0.0584 0.0603 0.0593 5.93 ± 0.13 

U2OS 0.0587 0.0618 0.0603 6.03 ± 0.22 

 

The 5mC content in each cell line was quantified by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). Shown are results from two independent experiments. The 5mC content is 

shown as a percentage of the total cytosine pool according to peak areas: 5mdC/(dC+5mdC) x 100%. 

SD, standard deviation.  
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Figure 19. PRMT6 expression and correlation with DNA methylation in cancer samples from TCGA 

database. 

A. Relative expression of PRMT6 in cancer samples in the TCGA database (from cBioPortal for Cancer 

Genomics). B. Correlation of PRMT6 expression and DNA methylation data in the TCGA database. 

BRCA, breast cancer; LUAD, lung adenocarcinoma; COAD, colorectal adenocarcinoma. Wilcoxon rank 

sum non-parametric test with two-tailed P values was used to determine the differences in DNA 

methylation levels between cancer samples with the highest (top 10%) and lowest (bottom 10%) PRMT6 

expression levels in each cancer type. 
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See Figure 20 legend in next page. 
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Figure 20. PRMT6 depletion or inhibition restores DNA methylation in MCF7 cells. 

A and C. Western blot analysis of MCF7 cells stably transfected with PRMT6 shRNAs (A) or treated 

with MS023 (10 µM for 4 days) (C). B and D. Dot blot analysis of samples in (A) and (C), respectively, 

with 5mC antibody. DNA loading was verified by SYTOX Green staining. E. Bisulfite sequencing 

analysis of 45S rDNA promoter region containing 27 CpG sites. Open circles, unmethylated CpGs; 

Filled circles, methylated CpGs. F. Nuclear fractionation of MCF7 cells treated with MS023 for UHRF1 

chromatin association. PCNA and HP1α were used as controls for soluble and chromatin-associated 

proteins, respectively. G. Quantification of data in (F) by densitometry using Image J. Shown are 

percentages of soluble and chromatin-associated UHRF1 in each sample (mean + SD from three 

independent experiments). H-J. ChIP assays or MeDIP assays showing relative enrichment of 

H3R2me2a (H) and UHRF1 (I) or relative DNA methylation levels (J) at HOXA2, CDKN1A and 

GREB1C promoter regions (mean + SD from three independent experiments). See also Figure 21. 

 



www.manaraa.com

 81 

 

 

See Figure 21 legend in next page. 
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Figure 21. PRMT6 knockdown or inhibition in MCF7 cells leads to defects in cell proliferation. 

A and B. MCF7 cells stably transfected with control or PRMT6 shRNAs were cultured for 12 days 

(starting at 104 per well), and the cells were visualized daily and counted every 4 days. Shown are 

representative images on day 10 (A) and the growth curves (B). Scale bars in (A), 50 µm. C and D. 

MCF7 cells were cultured in the presence of DMSO or MS023 (10 µM) for 10 days (starting at 105 per 

well), and the cells were visualized daily and counted every other day. Shown are representative images 

on day 4 and day 9 (C) and the growth curves (D). Scale bars in (C), 50 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 83 

4.3 DISCUSSION 

 

Various epigenetic mechanisms act cooperatively in regulating chromatin structure and gene 

activity. While it has been well established that DNA methylation and several histone modifications, 

notably lysine methylation, are functionally linked (189, 196), much less clear is the crosstalk between 

DNA methylation and arginine methylation. In this study, we demonstrate that PRMT6 is a negative 

regulator of DNA methylation. We show that overexpression of PRMT6 in mESCs compromises Uhrf1 

association with chromatin. Consistent with biochemical and structural evidence that H3R2 methylation 

inhibits Uhrf1-H3 interaction (65, 66, 190-192), our results indicate that the catalytic activity of PRMT6 

is required for its effect on DNA methylation. Thus, we propose that PRMT6, by generating H3R2me2a, 

impairs recruitment of the Dnmt1-Uhrf1 complex to newly replicated DNA, resulting in passive DNA 

demethylation. However, we cannot rule out the possibility that PRMT6-mediated methylation of other 

arginine residues on histone or non-histone proteins also contributes to DNA methylation changes. Our 

work uncovers a novel regulatory mechanism involved in the maintenance of DNA methylation. 

While the relevance of PRMT6 in regulating DNA methylation in normal developmental and 

cellular processes remains to be determined, we provide evidence that PRMT6 overexpression 

contributes to global DNA hypomethylation in cancer cells. We show that PRMT6 expression levels 

inversely correlate with DNA methylation levels in both cancer cell lines and primary cancer tissues. 

Moreover, depletion or inhibition of PRMT6 leads to restoration of DNA methylation levels in MCF7 

cells, suggesting a causal link between PRMT6 overexpression and DNA hypomethylation. It is worth 

noting that, while most PRMT6 high-expressing cell lines have relatively low levels of DNA 

methylation, some cell lines that are severely hypomethylated (e.g., MDA-MB 231, SKBR3) show no 

obvious PRMT6 upregulation (Figure 18A and Table 3), suggesting that multiple mechanisms are 

involved in DNA hypomethylation in cancer. Some of the mechanisms likely affect the functionality of 

the DNMT1-UHRF1 complex. UHRF1 could positively or negatively impact DNA methylation. On the 

one hand, UHRF1 is essential for DNMT1 recruitment to newly replicated DNA to maintain DNA 

methylation (50, 51). On the other hand, UHRF1, an E3 ubiquitin ligase, has been shown to ubiquitinate 
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UHRF1 itself, DNMT1 and DNMT3A, leading to their degradation (104, 106-108). UHRF1 is highly 

expressed in many cancers (113), which likely contributes to DNA methylation changes. Indeed, 

overexpression of human UHRF1 in zebrafish hepatocytes leads to Dnmt1 mislocalization and 

degradation, DNA hypomethylation, and hepatocellular carcinoma (109).  

PRMT6 is overexpressed in multiple types of cancer. In breast cancer, PRMT6 levels positively 

correlate with tumor stages, suggesting that PRMT6 may contribute to tumor progression (140). 

Nevertheless, we observed that the benign breast cancer cell line MCF7 has higher levels of PRMT6 than 

the aggressive cell line MDA-MB 231 (Figure 18A), indicating that the relationship between PRMT6 

expression and cancer invasiveness is complex. These differences could be attributed to the different 

cancer subtypes that they represent. How PRMT6 overexpression contributes to tumorigenesis remains 

to be determined. PRMT6 generally functions as a transcriptional repressor, although it has also been 

shown to act as a co-activator of nuclear receptors such as estrogen receptor (113). In this study, we 

demonstrate that PRMT6 contributes to DNA hypomethylation, which is another characteristic 

associated with cancer as it could lead to genomic instability and expression of cancer-promoting genes. 

Importantly, the effect of PRMT6 on DNA methylation is reversible, as depletion or inhibition of 

PRMT6 restores DNA methylation levels in MCF7 cells. This raises the possibility of targeting PRMT6 

for specific cancer therapy. However, it remains to be determined to what extent PRMT6-dependent 

DNA hypomethylation contributes to tumorigenesis and maintenance of the tumor phenotype. 
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CHAPTER 5: Regulation of DNMT1 in intestinal stem cells 
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5.1 INTRODUCTION 

 

After the establishment of DNA methylation patterns during early embryonic development by de 

novo DNMTs, these patterns are largely maintained by DNMT1 during differentiation of somatic cells, 

although some loci-specific changes occur in a cell-type specific manner. These DNA methylation 

changes are important for developmental progression and cell lineage choice, as DNA methylation is a 

critical component of the regulatory network that controls the gene expression program that drives proper 

differentiation and maintains the differentiated states (3). In postnatal mammals, DNA methylation is 

generally stable in most somatic tissues but shows dynamic changes in tissues with high proliferation 

rates such as the intestine, skin and hematopoietic compartments. In these tissues, somatic or “adult” 

stem cells are fundamental to maintaining tissue homeostasis, as they undergo constant proliferation, 

self-renewal and differentiation to give rise to the diverse cell types that form the tissue (197). The 

balance between adult stem cell self-renewal and differentiation is a complex process that involves 

various epigenetic mechanisms, including DNA methylation (93, 198-200), and its disruption is 

associated with development of diseases, including cancer. However, how DNA methylation is regulated 

in adult stem cells and its roles in self-renewal and differentiation are poorly understood. 

 The high cell turnover of the intestinal epithelial tissue makes it an ideal system to study adult 

stem cell functions in tissue regeneration, as well as the molecular mechanisms that regulate their self-

renewal and differentiation for the maintenance of tissue homeostasis. This tissue is sustained by the 

presence of intestinal stem cells (ISCs) that reside at the bottom of the intestinal crypts, which are 

proliferative units embedded in the wall of the intestine (197, 201). Studies in mouse intestinal 

epithelium revealed that DNA methylation is required for its development. For example, Dnmt1, the 

highest expressed DNMT in small intestine, is essential for perinatal development of intestinal epithelial 

progenitors in mice, as its loss results in impaired proliferation, global DNA hypomethylation, DNA 

damage and apoptosis, leading to loss of villi and, ultimately, postnatal lethality (202, 203). Similarly, it 

has been shown that inactivation of the DNMT1 gene in the human colon cancer cell line HCT116 results 

in global DNA hypomethylation, increased genomic instability and severe mitotic defects that ultimately 
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triggers apoptosis (63). In contrast, Dnmt1 function is different in adult small intestine, as its conditional 

deletion in adult ISCs results in expansion of intestinal crypts and aberrant gene expression (203, 204). 

Moreover, genome-wide DNA methylation analysis in ISCs showed dynamic DNA methylation at 

enhancers that regulate critical genes for stem cell self-renewal and differentiation, which is associated 

with transcription factor binding (204-206). Notably, one study showed that Dnmt1 is required to 

maintain the gained DNA methylation at specific ISCs enhancers upon differentiation, such as the ones 

that regulate expression of the genes Olfm4 and Hes1 (204). The striking differences observed in the 

mouse phenotypes after Dnmt1 deletion in perinatal progenitors compared to adult ISCs are partially due 

to the compensatory effect of Dnmt3b upregulation after Dnmt1 deletion in adult crypts (207), as in the 

absence of Dnmt1, crypts cells require Dnmt3b for their survival. Indeed, combined deficiency of Dnmt1 

and Dnmt3b results in increased DNA damage and apoptosis, leading to severe crypt and villi 

degeneration (207).  

 Therefore, it is important to understand the role of DNA methylation in the balance between 

ISCs self-renewal and differentiation, as well as the molecular mechanisms that regulate its function. 

This is highly relevant to human diseases, as dysregulation of these epigenetic mechanisms contributes to 

the development of gut disorders, like inflammatory diseases and colon cancer (201). In fact, multiple 

studies have associated aberrant DNA methylation in ISCs with the development of colon cancer (75, 77, 

208, 209). In this study, I discovered that intestinal crypts specifically express a shorter Dnmt1 protein 

product, which results from an endoproteolytic cleavage event. To our knowledge, this is the first 

example of a cleavage event as a regulatory mechanism of the DNA methylation machinery. Although 

the data are preliminary, better understanding of the functional relevance of this particular processing 

event, as well as the molecular mechanisms involved, could provide important insights into the 

regulation and functions of DNA methylation in ISCs. 
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5.2 RESULTS AND DISCUSSION 

Mouse intestine express a short Dnmt1 protein product 

Other than a few proteins such as Uhrf1 and PCNA, the players that regulate Dnmt1 activity and 

functions are largely unknown, partly because commercial Dnmt1 antibodies are not specific or not 

efficient for some applications (e.g. immunoprecipitation). In order to facilitate the study of Dnmt1 

regulation in mouse tissues, we generated a Flag-Dnmt1 knock-in (KI) mouse by gene targeting, 

whereby a 3XFlag tag was introduced in exon 4 of Dnmt1, right after the initiation codon of Dnmt1o 

(Figure 22A). We expected that Dnmt1o would be tagged in oocytes and the full-length Dnmt1 would be 

tagged in somatic tissues. After obtaining mESC clones containing the correctly targeted allele, they 

were introduced into receiver blastocysts to derive chimeric mice, which were then crossed with 

C57BL/6J mice to obtain germline transmission of the targeted allele. Deletion of the floxed IRES-bGeo 

selection cassette, resulting in the functional Flag-Dnmt1 KI allele, was achieved by crossing with Zp3-

Cre mice (Figure 22A).  

In order to validate the expression of Flag-Dnmt1 in adult tissues, we performed western blot 

analysis using Flag antibody on whole protein extracts from different mouse tissues (ovary, liver, brain, 

colon, small intestine and lung) obtained from heterozygous KI mice and used wild-type mice tissues as 

controls. Unexpectedly, we were not able to detect Flag-Dnmt1 protein in small intestine (here after 

referred as intestine for simplicity), although it was detected in the other tissues analyzed (Figure 22B). 

Surprisingly, when we probed the same membrane with an antibody that recognizes endogenous Dnmt1, 

we observed a strong band of a significantly smaller size (~160 kDa) in intestine compared to the full-

length Dnmt1 protein band (~210 kDa) observed in the rest of the tissues analyzed. Importantly, using 

the antibody specific for endogenous Dnmt1, we identified the same protein band in intestine obtained 

from wild-type mouse (Figure 5.1 B). This result indicates that the presence of the smaller Dnmt1 protein 

band is not an experimental artifact that resulted from the gene-targeting strategy and instead suggests 

that a smaller Dnmt1 protein product, which lacks part of the N-terminal region including the sequence 

encoded by exon 4, is specifically present in intestine.  
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Figure 22: Generation of Flag-Dnmt1 KI allele and detection of a short Dnmt1 protein in small intestine. 

A. Gene-targeting strategy for knocking in a 3XFlag tag (in red) in exon 4 of Dnmt1, right after the 

initiation codon (ATG) for Dnmt1o. Dnmt1 exons are indicated by black boxes. LoxP sites are indicated 

by black triangles. The IRES-bGeo selection cassette is also shown. Cre-mediated recombination to 

delete the selection cassette results in the generation of the active KI allele. B. Confirmation of the 

expression of FLAG-Dnmt1 in different tissues of the KI mouse by western blot using Flag tag antibody. 

Detection of short Dnmt1 in small intestine is shown using endogenous Dnmt1 antibody, while b-actin is 

used as loading control. 
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The short Dnmt1 protein is not due to alternative splicing or different translation start site usage 

To determine what level of regulation gives rise to the intestine-specific small Dnmt1 protein 

product, we first investigate whether the short Dnmt1 results from alternative mRNA splicing. To this 

end, we isolated total RNA from purified intestinal crypts, as well as from mESCs as a control, and 

detected by RT-qPCR the presence of transcripts containing different exons encoding amino acids 

located at the N-terminal region of Dnmt1. We designed primer pairs to amplify fragments covering 

exons 4 to 6, or 5 to 8, and as control we amplified fragments covering exons 25 and 26 located in the 

middle of Dnmt1 protein and exons 33 and 34 located at the C-terminal region of the protein (Figure 

23A). Our results indicate that all the exons examined were detected in mRNA from intestinal crypts, as 

well as from mESCs (Figure 23B). We confirmed by sequencing that Dnmt1 mRNA transcripts from 

intestinal crypts and mESCs were identical. Together, our data indicates that the short Dnmt1 protein 

product does not result from alternative mRNA splicing. 

 Dnmt1o, the oocyte-specific isoform, originates from alternative promoter usage and, as a result, 

a downstream AUG in exon 4 is used as the translation initiation codon, which results in the lack of 118 

amino acids at the N terminus of the full-length DNMT1 (Figure 23A). We therefore investigated 

whether the usage of a downsteam translation initiation codon would produce the small Dnmt1 protein 

detected in intestine. To this end, we generated four different constructs using downstream AUG codons 

with potential Kozak sequences as the translation initiation sites. We expressed these N-terminally 

truncated Dnmt1 proteins in Dnmt1 KO mESCs and compared their protein sizes with that of the short 

Dnmt1 product in intestine by western blot. As shown in Figure 23C, all the constructs generated protein 

products that were smaller than the short Dnmt1 protein observed in intestinal crypts. These results 

indicate that it is unlikely that the intestine-specific short Dnmt1 protein product is generated by the 

usage of an alternative translation initiation codon. 

 To determine whether the KI allele produces any Flag-tagged protein product in intestine, we 

performed immunohistochemistry analysis of intestine tissue sections from a Flag-Dnmt1 KI 

homozygous mouse using a Flag antibody, which detected signal in the intestinal crypts (Figure 23D, left 

panel). The position of the Flag-positive cells in the crypts indicates that these cells are composed of 
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ISCs (green arrowheads) and transient-amplifying (TA) progenitors (red arrowheads), consistent with the 

fact these are proliferative populations that express high levels of Dnmt1 (204).  Importantly, the cell 

localization patterns detected with the Flag immunohistochemistry staining was highly similar to the 

patterns observed in the staining of wild-type intestine with an antibody for endogenous Dnmt1, which 

recognizes an epitope located at the middle of the protein (Figure 23D, right panel). Together, these 

results indicates that the missing N-terminal protein fragment from intestinal Dnmt1 is likely present in 

the intestinal crypts of Flag-Dnmt1 KI mouse, suggesting that the smaller Dnmt1 protein, which lacks 

this fragment, may result from post-translational processing of the full-length Dnmt1 in these cells.  
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Figure 23: Short intestinal Dnmt1 is not due to alternative splicing or different translation start site usage.  

A. Diagram of mouse Dnmt1 protein indicating domains and position of exons analyzed by RT-qPCR. B. 

RT-qPCR results showing the presence of the indicated exons in Dnmt1 mRNA from intestinal crypts 

compared to mESCs. C. Western blot indicating that the truncated Dnmt1 proteins generated from 

potential downstream translation start sites are smaller than the Dnmt1 product detected in intestine. D. 

Immunohistochemistry analysis of intestine sections with Flag and Dnmt1 antibodies showing both Flag 

and Dnmt1 signals in intestinal crypts. Green arrowheads, ISCs. Red arrowheads, TA cells. 
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The intestinal Dnmt1 protein product is generated by an endoproteolytic cleavage event. 

Our data indicated that the intestinal short Dnmt1 protein was not produced by alternative 

mRNA splicing or alternative translation initiation codon usage. Moreover, analysis of Dnmt1 

localization in the intestinal crypts suggested that the N-terminal fragment containing the Flag tag was 

present in cells that express Dnmt1 (Figure 23). Based on these data, we hypothesized that the smaller 

intestinal Dnmt1 could be caused by a post-translational processing event, such as endoproteolytic 

cleavage. To test this hypothesis, we examined for the presence of small protein fragments by western 

blot using different antibodies that recognize epitopes located in the N-terminal or middle region of 

Dnmt1, as well as Flag antibody. For this analysis, we compared intestinal crypts purified from wild-type 

mouse, with intestine and colon tissue from a Flag-Dnmt1 KI homozygous mouse. As a control, we used 

full-length Dnmt1 expressed in Dnmt1 KO mESCs. Our results confirmed that both purified intestinal 

crypts and intestine tissue had the short Dnmt1 protein, as the ~160-kDa protein band was detected in 

both samples using the antibody that recognizes the middle region of Dnmt1 (Figure 24A, left panel). In 

contrast, colon tissue showed a band of the corresponding size of full-length Dnmt1 (~210 kDa), as 

observed in mESCs expressing Dnmt1 full-length protein. Notably, western blot analysis using the 

antibody that recognizes the N-terminal region of the Dnmt1 revealed that the samples corresponding to 

intestinal crypts and intestine tissue also had the protein band corresponding to the size of full-length 

Dnmt1, although their levels were lower compared to colon or mESCs (Figure 24A, right panel). 

Importantly, a small protein fragment of ~50 KDa was detected using this antibody in crypts, intestine 

and colon samples (Figure 24A, right panel). Similar results were obtained using Flag antibody (Figure 

24A, middle panel). Taken together, these results indicate that Dnmt1 undergoes an endoproteolytic 

cleavage event that results in the short Dnmt1 protein product of ~160 KDa and an N-terminal protein 

fragment of ~50 KDa in intestine and, to a lesser extent, in colon.  

The western blot and immunohistochemistry results suggest that both uncleaved full-length and 

cleaved Dnmt1 proteins are present in cells at intestinal crypts. Different possibilities can be envisioned 

regarding the functionality. For example, it is possible that the Dnmt1 protein is not immediately cleaved 

after protein synthesis and thus it resides in the cells for certain period of time, until the cleavage event 
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occurs as part of an unknown regulatory mechanism. A second possibility, which is not mutually 

exclusive from the first possibility, is that the short N-terminal protein fragment that results from the 

Dnmt1 cleavage event may have its own unidentified biological function. The second possibility is 

particularly intriguing, given that the small N-terminal fragment is relatively stable rather than being 

further processed and rapidly degraded. There are some documented examples that protein fragments 

have independent and different functions from the original protein from where they originate. For 

example, TET2 has lost its CXXC domain during evolution, as a result of a chromosomal inversion event 

that has converted a portion of the ancestral TET2 gene into a separate gene, IDAX, which encodes a 

protein containing the original CXXC domain. IDAX binds unmethylated CpG sequences via its CXXC 

domain, localizes at CGIs, and physically interacts with TET2, suggesting that it may play a role in 

recruiting TET2 to its genomic targets (210). Although this is strictly not a similar case as with intestinal 

Dnmt1, it is possible that evolution has found a different way of generating a protein fragment with 

possible regulatory functions by cleaving the N-terminal region of Dnmt1. However, the functional 

significance of this cleavage event requires further investigation.  

An important step to determine the functional significance of Dnmt1 cleavage in intestine is to 

elucidate the molecular mechanism underlying this processing event. To this end, we first aimed to 

identify the precise site and amino acid motif sequence where the cleavage event occurs. For this 

purpose, we immunoprecipitated both the full-length Flag-Dnmt1 and the cleaved N-terminal Flag-

fragment from intestinal crypts purified from Flag-Dnmt1 KI homozygous mouse (Figure 24B) and 

submitted the samples for mass spectrometry analysis. Mapping of the peptides identified from the full-

length Flag-Dnmt1 indicated that 94 exclusive unique peptides were successfully identified and mapped 

to the Dnmt1 amino acid sequence accounting for a 54% coverage (Figure 24C-D), while only 9 

exclusive unique peptides were successfully identified in the cleaved N-terminal Flag-fragment, which 

correspond to 8% coverage of Dnmt1 amino acid sequence (Figure 24C and E). The most downstream 

peptide mapped from the cleaved N-terminal Flag-fragment (SKEDPDREARPE) ended at Glu265 of 

Dnmt1 (Figure 24E). Based on the sizes of the cleaved N-terminal fragment (~50 kDa) and the 

remaining Dnmt1 protein product (~160 kDa), we estimated that the cleavage site is around residue 450. 
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Interestingly, the N-terminal ~450-amino-acid region containing several conserved domains (Figure 

23A). For example, this region contains the sequences required for the interaction with DMAP1, 

Dnmt3a, Dnmt3b and the PRC2/Eed-Ezh2 complex. Of these, it has been suggested that the interaction 

with DMAP1 regulates Dnmt1 stability, as the DMAP1-interaction domain (residues 1 to 120) is also not 

present in the more stable DNMT1o isoform (53). Moreover, the missing N-terminal fragment from 

intestinal Dnmt1 also contains the PBD region (residues 161 to 172), which mediates the interaction 

between Dnmt1 and PCNA, and the NLS motif (residues 175 to 202) (8). Together, these results suggest 

that the short intestinal Dnmt1 protein lacks a region that harbors important motifs required for the 

interaction with proteins that play different regulatory functions such as interaction with the DNA 

replication machinery, localization and stability. 

Furthermore, the cleaved N-terminal fragment of intestinal Dnmt1 contains several sites that are 

modified by different PTMs, most notably serine phosphorylation. In fact, phosphorylation of one of 

these serine residues (Ser143 in human DNMT1, equivalent to Ser140 in mouse Dnmt1) by Akt1 has 

been implicated in Dnmt1 stabilization, while methylation of the adjacent lysine residue (Lys142 in 

human DNMT1, Lys139 in mouse Dnmt1) by Set7/9 was associated with Dnmt1 degradation (211). In 

addition, this cleaved fragment might also be required for the homodimerization of Dnmt1, which has 

been reported to be mediated by head to head interaction of the N-terminal domains (212).  
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See Figure 24 legend in next page. 
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Figure 24: Mouse intestinal Dnmt1 protein product was generated by an endoproteolytic cleavage event. 

A. Western blot of Dnmt1 protein products in extracts from purified intestinal crypts, intestine and colon, 

compared to full-length Dnmt1 transfected into Dnmt1 KO mESCs as control. Arrows indicate the 

position of Flag-Dnmt1 full-length (F.L.), short Dnmt1 and the N-terminal protein fragment. B. Flag 

immunoprecipitation of intestinal Flag-Dnmt1 full-length uncleaved protein and cleaved Flag-N-terminal 

protein fragment from intestinal crypts purified from Flag-Dnmt1 KI homozygous mouse. Gel was 

stained with Coomasie Blue and the indicated protein bands were excised and analyzed by mass 

spectrometry (MS). C. Protein sequence coverage by the MS analysis of both the Flag-Dnmt1 uncleaved 

protein and the cleaved N-terminal protein fragment. D. Peptides detected in MS analysis (yellow) from 

the full-length Flag-Dnmt1 uncleaved protein mapped to Flag-Dnmt1 knock-in amino acid sequence. E. 

Peptides detected in MS analysis (yellow) from the cleaved N-terminal protein fragment mapped to Flag-

Dnmt1 knock-in amino acid sequence.   
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Global DNA methylation in intestine is not significantly different from that in other tissues. 

 The results described above suggest that the N-terminal cleavage of intestinal Dnmt1 might have 

regulatory implications, as the cleaved fragment contains important regulatory domains that mediate 

protein interactions and specific residues that are likely subjected to PTMs with regulatory functions. 

Therefore, it is reasonable to hypothesize that intestinal short Dnmt1 protein could have different DNA 

methylation activity. To test this hypothesis, we first analyzed DNA methylation levels using the 

methylation-sensitive restriction enzymes HpaII and MaeII, followed by southern blot hybridization at 

the centromeric and pericentric heterochromatic regions of minor satellite repeats and major satellite 

repeats, respectively. We compared DNA purified from intestine, colon, brain and liver tissues and from 

purified intestinal crypts with Dnmt1 KO or wild-type mESCs as controls. DNA methylation analysis at 

minor satellite repeats failed to detect any significant difference in DNA methylation levels in mouse 

tissues, purified crypts, and mESCs (Figure 25A). In contrast, when DNA methylation levels at major 

satellite repeats were analyzed, we detected a lower level of DNA methylation in the colon tissue sample, 

while no difference was observed for the rest of the tissues (Figure 25B). We further analyzed total levels 

of DNA methylation by dot blot analysis using 5mC specific antibody, in this case comparing DNA 

samples obtained from brain, lung, liver, intestine, colon and ovary. Our results showed that DNA 

methylation was slightly higher in intestine compared to the rest of the tissues, and that the lowest levels 

of DNA methylation were detected in colon (Figure 25C), as similarly observed with major satellite 

repeats methylation analysis. 

Despite this interesting observation, more quantitative and specific experiments, such as 

quantification of total 5mC by LC-MS/MS and genome-wide DNA methylation analysis by WGBS, 

would confirm whether DNA methylation is significantly different in intestine compared to other tissues. 

If this turn out to be the case, it might be possible that intestinal Dnmt1 acquires enhanced stability 

through the cleavage of its N-terminal, similarly as the more stable Dnmt1o that lacks the first 118 amino 

acids including the DMAP1 interacting domain (53). However, this hypothesis requires further 

investigation.  
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In summary, our finding that Dnmt1 is post-translationally processed in intestine is intriguing but 

preliminary. Determining the molecular mechanism and biological significance of this cleavage event 

would contribute to the understanding of the regulation of DNA methylation in intestinal tissue and the 

role that this plays in maintaining intestinal epithelial homeostasis and regeneration.  
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Figure 25: DNA methylation analysis in mouse tissues. 

DNA methylation analysis by digestion with methylation-sensitive enzymes and southern blot 

hybridization for the minor satellite repeats (A) or major satellite repeats (B), in mouse tissues compared 

to mESCs. Dnmt1 KO and wild-type mESC were used as controls. C. Analysis of total DNA methylation 

levels by dot blot using 5mC specific antibody in different mouse tissues. Total DNA was stained with 

Sytox Green Dye as loading control. 
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CHAPTER 6: DISCUSSION 

 

 A complex network of different types of epigenetic mechanisms control the structure and 

functions of chromatin that is fundamental for multiple biological processes. DNA methylation, which is 

present in many eukaryotic organisms, is an important component of the network (196). In mammals, 

DNA methylation is essential for a variety of biological functions, and its dysregulation plays major roles 

in the development of multiple human diseases (3, 165). Since the discovery of DNA methylation more 

than 60 years ago (1), extensive research in this epigenetic modification has elucidated most of its 

functions (5). However, many aspects of the regulation of DNA methylation remain poorly understood. 

The regulation of DNA methylation is complex, which occurs at different levels, including the 

production of multiple DNMT isoforms. For example, as described earlier in section 1.2, DNMT3A has 

two major isoforms, the full-length DNMT3A1 that is ubiquitously expressed at low levels in most 

somatic cells, and a shorter isoform known as DNMT3A2 (Figure 2), which is highly expressed in 

mESCs and germ cells. DNMT3A1 is highly enriched and tightly associated with heterochromatin, and 

DNMT3A2 is more widely distributed on and less tightly bound to chromatin (213). In the case of the 

DNMT3B, alternative splicing generates more than 30 isoforms, many of which lack catalytic activity 

but might play regulatory roles (26). For instance, mESCs mainly express the full-length catalytically 

active isoform DNMT3B1 and the inactive DNMT3B6, while somatic cells mainly express DNMT3B2 

and DNMT3B3, which are active and inactive isoforms, respectively (18, 213). In addition, three 

different isoforms of DNMT3L are expressed from cell-specific promoters at different developmental 

stages (180). Similarly, as described in detail in section 1.3, DNMT1 also express two major cell-specific 

isoforms, the full-length DNMT1 is expressed in somatic cells, while the shorter isoform DNMT1o is 

produced exclusively in oocytes (Figure 2) (8). In Chapter 5 of this dissertation, I described the 

identification of a new DNMT1 protein product, which is specifically present in mouse intestine. In clear 

contrast to the other known DNMTs isoforms that are generated by alternative splicing or different 

promoter usage, this new DNMT1 protein is generated by cleavage of the N-terminal region of the full-

length DNMT1 in intestinal stem cells (ISCs) (Figure 24). Endoproteolytic cleavage is a posttranslational 



www.manaraa.com

 102 

processing event that regulates the activity of a great number of proteins involved in multiple 

physiological functions, including signal transduction pathways or activation of apoptosis (214, 215). For 

example, in the Notch signaling pathway, the cleavage of the intracellular domain of the receptor is 

required for its nuclear translocation, where it binds to transcription factors and activates gene expression 

(214). In addition, proteolytic cleavage is also used to activate caspases from its pro-caspase inactive 

form, which in turn are responsible for the cleavage of multiple substrates to trigger apoptosis (215). To 

the best of my knowledge, the cleavage of the N-terminal region of DNMT1 is the first example of this 

kind of processing occurring in proteins involved in DNA methylation. Although the precise point of 

cleavage remains to be determined, the size of the cleaved fragment suggests that the resultant DNMT1 

protein product, like Dnmt1o, would lack the functional domain that mediates the interaction with 

DMAP1. Dnmt1o has been shown to be more stable than the full-length Dnmt1 (53).  It is therefore 

possible that this cleavage event is functionally important for ISCs, which are actively proliferating, 

unlike most adult stem cells that are generally quiescent. However, further biochemical, cellular and 

genetic studies are required to determine the biological role and functional significance of this event. 

DNA methylation can also be regulated by DNMT-interacting proteins and cofactors. For 

instance, as described in section 1.2, in vitro studies demonstrate that DNMT3L serves as a cofactor for 

both DNMT3A and DNMT3B, as it enhances their catalytic activity to similar extent (166-168). 

However, the in vivo function of DNMT3L seems to be very different, as genetic studies in mice showed 

that Dnmt3L deletion results in infertility (42, 44, 45), while this phenotype was only recapitulated by the 

conditional deletion of Dnmt3a, but not Dnmt3b, in the germ line (35). These genetic evidences suggest 

that the functions of DNMT3L in vivo are more likely associated with DNMT3A activity, rather than 

DNMT3B activity. What determines the functional specificity of Dnmt3L is not well understood. In 

Chapter 3 of this dissertation, I addressed this issue using mESCs, which express high levels of 

DNMT3A, DNMT3B and DNMT3L, consistent with the high rate of de novo DNA methylation 

observed in these cells (32). By genome-wide DNA methylation analysis, I found that a significant 

fraction of the genome is hypomethylated in DNMT3L-deficient mESCs, with the majority of 

hypomethylated CpG sites being DNMT3A targets (Figure 8). Importantly, I found that DNMT3L is 
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critical for DNMT3A (especially DNMT3A2) protein stability through direct interaction and the 

formation of the DNMT3L-DNMT3A2 complex (Figure 12). Therefore, in the absence of DNMT3L, 

DNMT3A2 protein becomes unstable and is rapidly degraded, leading to DNA hypomethylation at 

DNMT3A-specific loci. These findings, described in Chapter 3, uncover a new role for DNMT3L in the 

regulation of DNMT3A function, which provides a plausible explanation for the functional specificity of 

DNMT3L in vivo (Figure 13C). My results also confirmed that DNMT3L is predominantly a positive 

regulator of de novo methylation, contrary to a recent report showing that DNMT3L regulates DNA 

methylation positively or negatively, depending on genomic regions, in mESCs (49). 

While DNMT3L is an important regulator of de novo DNA methylation, UHRF1 is essential for 

maintenance DNA methylation by directing DNMT1 to hemi-methylated CpG sites generated during 

DNA replication (50, 51). Multiple studies have explored the regulation of UHRF1 functions in the 

modulation of DNA methylation using mESCs as a model system. For example, a recent study from our 

laboratory, which I contributed to, showed that UHRF1 degradation is responsible for global DNA 

hypomethylation in a small population, known as 2C-like mESCs, and that this event is essential for the 

maintenance of telomere homeostasis and long-term self-renewal of mESCs (148). Another study 

showed that mESCs cultured in 2i medium, which maintains mESCs in the ground naïve state (216), 

show global DNA hypomethylation due, at least in part, to reduction of UHRF1 at the protein level 

(217). The role of UHRF1 in DNA methylation is complex, as it can act either as a positive regulator by 

serving as a DNMT1 cofactor or as a negative regulator through its E3 ligase-mediated degradation of 

UHRF1 itself and DNMT1. For instance, UHRF1 is frequently upregulated in cancer, and 

overexpression of UHRF1 experimentally can induce global DNA hypomethylation and tumorigenesis 

(109). Together, all these findings indicate that UHRF1 is a major point of regulation in inducing 

changes in global DNA methylation during normal development and in diseases.  

In Chapter 4 of this dissertation, I provided evidence that global DNA methylation can also be 

altered by regulating UHRF1 chromatin association. UHRF1 has different domains that recognize 

epigenetic modifications, which play critical roles in its regulation through a complex crosstalk between 

DNA methylation and different histone modifications (196). Previous biochemical studies showed that 
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the PHD finger of URHF1, which is slightly different from other PHD fingers that usually bind to 

trimethylated lysine residues in histones (e.g. H3K4me3) (218), instead binds to unmodified H3R2, but 

not methylated H3R2 (65). My work, described in Chapter 4, extended the previous finding by 

demonstrating that H3R2 methylation has a major effect on DNA methylation. Specifically, I showed 

that PRMT6, an enzyme responsible for H3R2me2a, negatively regulates global DNA methylation by 

impairing the recruitment of UHRF1 to chromatin. My finding uncovers a functional and mechanistic 

link between histone arginine methylation and DNA methylation, an area we are largely ignorant about, 

unlike the crosstalk between histone lysine methylation and DNA methylation, which has been well 

established (196). Notably, PRMT6 is highly overexpressed in cancer cells, which also exhibit global 

DNA hypomethylation as a characteristic epigenetic feature (4, 113). Based on the evidence, I further 

explored the connection between these two molecular alterations in cancer cells. The results obtained 

indicate that PRMT6 is indeed upregulated in both cancer cell lines and in many primary tumor samples, 

and that this upregulation correlates with global DNA hypomethylation in cancer (Figure 18). 

Importantly, I was also able to demonstrate that the effect of PRMT6 on DNA methylation is reversible 

in cancer cells, as depletion of PRMT6 protein or inhibition of its enzymatic activity leads to restoration 

of DNA methylation levels in MCF7 cells, a breast cancer cell line with high expression of PRMT6 

(Figure 20). This finding has important translational implications, as it raises the possibility of targeting 

PRMT6 for cancer therapy. In addition, recent studies showed that the combination of the DNMT 

inhibitor 5-azacitidine (5-Aza) with immune checkpoint blockade therapy (anti-CTLA-4 and anti-PD-L1) 

have important synergistic anti-tumor effects (219-226). My findings demonstrate that similarly to 5-aza, 

PRMT6 overexpression causes global DNA hypomethylation in cancer cells. This can be advantageous 

to clinicians, as the effect of DNA hypomethylation is specifically restricted to cancer cells, unlike 5-aza 

that is delivered systemically and has important side effects. It will be interesting to explore whether 

tumors with PRMT6 upregulation are more sensitive to immune checkpoint therapy and whether PRMT6 

levels can be used for patient stratification for the choice of therapies.  
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In summary, my work led to the following key conclusions: i. DNMT3L is a positive regulator 

of de novo DNA methylation in mESCs that mainly affects DNMT3A target regions; ii. The functional 

specificity of DNMT3L is largely conferred by its role in stabilizing DNMT3A2 protein; iii. PRMT6 

negatively regulates maintenance DNA methylation by impairing the recruitment of the UHRF1-

DNMT1 complex to chromatin; iv. PRMT6 upregulation contributes to global DNA hypomethylation in 

cancer cells; v. PRMT6-induced DNA hypomethylation is reversible in cancer cells; and vi. Intestinal 

stem cells produce a shorter DNMT1 protein due to endoproteolytic cleavage. These findings expand the 

knowledge on the regulation of DNA methylation in mammalian development and cancer. 

 

Future directions 

The research findings described in this dissertation suggest important potential avenues for 

further research in the future. For instance, the presence of DNMT3L and DNMT3A is essential for the 

establishment of genomic imprints in germ cells, as their deletion in these cells show almost identical 

phenotypes (35, 42, 44, 45). Given its ability to stimulate DNMT3A activity in vitro, DNMT3L is 

generally assumed to function primarily as a catalytic cofactor of DNMT3A. Based on my findings 

reported in Chapter 3, it is likely that DNMT3L plays a critical role in stabilizing DNMT3A2 in germ 

cells as well (DNMT3A2 is the major DNMT3A isoform in the germ line). It will be interesting to 

examine the levels of DNMT3A2 in prospermatogonia and growing oocytes in DNMT3L KO mice and 

determine the significance of DNMT3A2 degradation (if proved true) in the phenotypes associated with 

DNMT3L deficiency, including the failure to establish germ line imprints. 

It is well established that various epigenetic mechanisms function cooperatively in regulating 

chromatin structure and functions. The crosstalk between arginine methylation and DNA methylation has 

been an understudied area. My work described in Chapter 4 indicates that PRMT6-mediated H3R2me2a 

is an epigenetic modification that negatively regulates DNA methylation and that dysregulation of this 

mechanism contributes to global DNA hypomethylation in cancer cells. Many questions remain to be 

answered. For example, it will be important to determine whether the mechanism is relevant in the 

regulation of DNA methylation in normal developmental and cellular processes. Given its dramatic 
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effect on global DNA methylation, it will be particularly interesting to investigate whether PRMT6 

expression and function are dynamically regulated and whether it plays a critical role in epigenetic 

reprogramming events during early embryogenesis and in germ cells. 

Moreover, global DNA hypomethylation is a common epigenetic alteration observed in cancer 

cells that has been associated with tumorigenesis (4). In addition, PRMT6 is frequently overexpressed in 

cancer cells, and several studies propose multiple roles implicating it in malignant transformation (113). 

In Chapter 4, I described the identification of a correlation between PRMT6 upregulation and global 

DNA hypomethylation in cancer cells, and provided evidence for the molecular mechanism involved. 

However, it remains to be investigated whether PRMT6-dependent DNA hypomethylation plays a major 

role in the formation and/or progression of tumors. The answer to this question could advance our 

understanding of the importance of DNA methylation in oncogenesis and provide further information 

regarding the relevance of targeting this mechanism for therapeutic purposes. 

Finally, in Chapter 5 of this dissertation, I described the finding of a short DNMT1 protein 

product present specifically in intestinal stem cells, which results from an endoproteolytic cleavage 

event. However, multiple issues remain to be addressed. The most important is to elucidate the biological 

significance of this event, together with the elucidation of the molecular mechanisms underlying this 

process (e.g. the enzyme(s) involved). Intestinal stem cells are very important to maintain tissue 

homeostasis in the gut, and they have been implicated in the development of colon cancer. Determining 

the function, mechanism and significance of this unique DNMT1 protein product could shed light on the 

functions of intestinal stem cells.  

Exploration of these research questions would further contribute to our understanding of the 

regulation of DNA methylation in mammalian development and human diseases. 
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